728x90

Fields with diversified, organic crops get more buzz from wild bees, concludes a synthesis of 39 studies on 23 crops around the world published March 11 in the journal Ecology Letters.





The study found that wild bees were more abundant in diversified farming systems. Unlike large-scale monoculture agriculture, which typically relies upon pesticides and synthetic fertilizers, diversified farming systems promote ecological interactions that lead to sustainable, productive agriculture. Such systems are characterized by high levels of crop and vegetative diversity in agricultural fields and across farming landscapes.

“The way we manage our farms and agricultural landscapes is important for ensuring production of pollinated-food crops, which provide about one-third of our calories and far higher proportions of critical micronutrients,” said study senior author Claire Kremen, professor at the University of California, Berkeley’s Department of Environmental Science, Policy and Management. “This result provides strong support for the importance of biologically diversified, organic farming systems in ensuring sustainable food systems.”

Many of the study’s authors, including Kremen, also co-authored a study published March 1 in Science that found that fruit and vegetable production increased when wild pollinators – as opposed to domesticated honeybees – were more abundant.

“That study showed that wild bees helped crop yield, and this study shows that organic crops in a diversified farming system help wild bees,” said Kremen.

Christina Kennedy, senior scientist at The Nature Conservancy, is the study’s lead author.


728x90
728x90

요약하면... 


본시험은 유기재배에 적합한 찰옥수수 품종선발과 선발된 품종의 녹비작물을 이용한 풋찰옥수수 유기재배기술 확립을 위하여 2011~2012년간 실시하였다. 1년차(2011)에는 전국에서 많이 재배되고 있는 찰옥수수 11품종(미흑찰, 아리찰, 흑점2호, 미백2호, 미백찰, 흑진주찰, 구슬옥, 얼룩찰1호, 일미찰, 찰옥4호, 대학찰)을 국립식량과학원과 홍천 옥수수시험장에서 분양받아 유기재배에 적합한 품종 선발시험을 실시하였다. 2년차(2012)에는 1년차에서 선발된 품종을 이용하여 유기재배 시 녹비작물(호밀, 헤어리베치, 귀리, 자운영, 유채)을 이용하여 잡초방제, 병충해 억제 효과 및 양분공급력을 검토하기 위하여 강원도 원주에서 실시한 시험결과는 다음과 같다. 

유기재배에 적합한 찰옥수수 11개 품종선발 시험에서 출웅기, 출사기, 수확기는 미백2호와 대학찰에서 빠른 경향이었다. 간엽수량은 미백2호에서 4,225.8/10a로 높은 수준으로 지상부 생체량이 높았다. 관능평가는 미백2호와 대학찰이 8로 가장 높은 평가를 받았는데, 실질적으로 소비자들이 선호도와 일치하는 경향을 보였다. 수량은 찰옥4호가 1,115.6/10a로 높은 편이었으나, 관능평가에서 높은 수준이 아니었다. 11개 품종의 내재해성은 미백2호는 피해가 없었고, 찰옥4호와 대학찰은 그 피해가 매우 낮았다. 
녹비이용 유기 찰옥수수 재배 실증 시험에서 녹비작물 투입전과 후의 토양 이화학적 특성의 변화는 토양 EC는 헤어리베치와 자운영에서 가장 높았다. 토양 유기물  함량은 헤어리베치구에서 증가가 가장 컷다. 녹비작물 체내 질소함량은 헤어리베치가 4.8%로 가장 높았으며, C/N율은 헤어리베치와 자운영이 각각 8.5%와 7.5%로 낮아 토양 투입 후 부숙이 양호할 것으로 판단되었다. 녹비작물간 찰옥수수의 수량은 헤어리베치구와 자운영구에서 가장 높았다. 
따라서 2011년 시험의 유기농에 적합한 풋찰옥수수 품종은 미백2호, 찰옥4호와 대학찰이 재배특성 및 관능평가 결과를 종합하면 유기농에 적합한 품종으로 판단되었다. 2012년 시험의 유기농에 적합한 녹비작물은 체내 질소함량, C/N율 및 찰옥수수 수량 결과를 종합하면 헤어리베치 및 자운영이 적합한 녹비작물로 판단되었다.  



말이 졸라리 어렵지만, 한마디로 요약하면... 미백2호, 찰옥4호, 대학찰 옥수수를 털갈퀴덩굴(헤어리베치)이나 자운영을 풋거름작물로 활용하여 유기재배하면 짱 좋다는 이야기입니다. 참고하세요. 


그런데 대학찰이 토종 옥수수를 죽인다아...


http://lib.dankook.ac.kr/dcollection/jsp/searchF/DcDetailView.jsp?itemId=000000177081

728x90
728x90




American farmers, as the recent Super Bowl ad showed, are just simple, hard-working folk, scratching a living from the land. Right? Except for the hard-working part, don’t believe it. Farmers are capitalists, just as much as their cousins in the big city. Case in point: as the price of crops like corn and soybeans has risen considerably in recent years—thanks to increased demand, both for food and as feedstocks for biofuel—farmers have been planting more of them. Supply and demand–it’s Econ 101 at its purest. (With the exception of thebillions upon billions of dollars worth of market-distorting subsidies that are part of the agriculture sector. But that’s grist for another post.)

If a farmer wants to increase the amount of grain they produce, he really only has a couple of options. He can try to squeeze more crop out of the land he’s already farming, which is something American farmers have been pretty good at. (Corn yields per acre have increased by more than two and a half times since 1960.) Or he can expand the amount of land that he’s farming, by converting or buying non-farmed land and putting it into cultivation. Land, after all, is the raw material of agriculture, like steel and rubber are the raw materials of a car. More land means more crops. Add in the fact that funding has been declining for the government’s Conservation Reserve Program, which pays farmers to protect wildlife by keeping land uncultivated.

(MORE: Desert Dreams: Can the Middle Eastern Country of Qatar Learn to Feed Itself?)

According to a new study in the Proceedings of the National Academy of Sciences, that’s exactly what’s happened to the western end of the great U.S. corn belt. Researchers from South Dakota State University crunched the numbers and found that 1.3 million acres of grassland in disappeared between 2006 and 2011 in North Dakota, South Dakota, Nebraska, Iowa and Minnesota. The grassland was converted to cropland, as farmers expanded their territory in an effort to cash in—and I mean that in a totally non-pejorative sense—on the boom in crop prices. In South Dakota and Iowa, as much as 5% of grassland per year was converted to farmland.

As lead author Christopher Wright told NPR, “This is kind of the worst-kept secret in the Northern Plains.” You can literally see the land being converted by the plow. But as the study goes onto state, turning grassland to cropland can have negative consequences for the larger environment:

For instance, it’s bad news for wildlife, because corn fields are much less inviting habitat for a wide range of wild creatures, from ground-nesting birds to insects, including bees. Corn and soybean fields are increasingly encroaching into the Prairie Pothole region of the Dakotas and Minnesota, the most important breeding habitat for waterfowl in North America.

Farmland—especially American farmland—is great for producing food that supports human beings. But it’s not so great for supporting other species—at least compared to native grasslands. (And it’s not just a problem for the U.S. The world may need to feed some 9 billion people by mid-century, which could mean doubling food production from current levels. Farming already covers nearly 40% of the planet’s land area. If that doubling is achieved by significantly expanding the amount of the planet under the plow, well, there really won’t be much wilderness left to save. We’ll be living on Planet Corn Belt.

(MORE: Whole Food Blues: Why Organic Agriculture May Not Be So Sustainable)



Read more: http://science.time.com/2013/02/20/as-crop-prices-rise-farmland-expands-and-the-environment-suffers/#ixzz2MFBZws6q


728x90
728x90

솔직히 난 평소에 미국 욕을 좀 하지만, 배울 건 배워야 한다고 생각한다.

바로 아래 정보도와 같은 부분이다. 배아프게 만드네.



지역 먹을거리 운동으로만 나아가지 말고, 지역 텃밭 운동을 하자는 주장이다.

이를 통해 미국의 텃밭농사에 대해 개략적으로 살펴보면,


텃밭농사를 짓는 사람의 79%가 대졸자이고, 그 가운데 54% 여성, 46%가 남성이며, 45세 이상이 68%에 달한다.


지역별로는 서부 23%, 중부 26%, 남부 29%, 북동부 22%의 비율이고,

평균 텃밭의 넓이는 약 20평, 아마 두둑 하나의 넓이(median)를 가리키는 것 같은데 그건 3평이다.


선호하는 작물은 토마토 86%, 오이 47%, 피망 46%, 강낭콩 39%, 당근 34%, 애호박(summer squash) 32%, 양파 32%, 고추 31%, 상추 28%, 완두콩 24%, 단옥수수 23%의 순이다.


이러한 넓이에서 이러한 작물을 재배하는 데 1주일에 들이는 시간은 평균 5시간, 5시간이면 된다. 그래서 작은 규모로는 주말 농사가 가능하다는 점!


텃밭농사를 짓는 가구 수는 2008년 3600만(31%)에서 2009년 4300만(37%)로 증가했다.


마지막으로 경제적 가치, 전국적으로 25억 달러를 소비하여 210억 달러를 돌려받았다. 무려 9배 가까운 수치. 돈만 따질 경우 그렇고 돈 이외의 얻는 효과들도 엄청나게 많다. 그러니 다들 텃밭농사에 도전해 보시길! 서울에서 땅을 구하기 어렵다는 점이 슬프네.







728x90
728x90


작물생산학.hwp


작물생산학.hwp
5.79MB
728x90
728x90

朝鮮ニ於ケル主要作物分布ノ狀況 조선총독부 권업모범장 1923년



































728x90

'곳간 > 사진자료' 카테고리의 다른 글

1896년부터 현재까지 미국 가뭄의 역사   (0) 2012.07.31
1959년 충주 수박밭  (0) 2012.07.20
명태 어획량  (0) 2012.07.11
축산분뇨 해양투기  (0) 2012.07.11
감자에 관한 정보도  (0) 2012.06.20
728x90

Summary:

Agrobiodiversity, or agricultural biodiversity, includes all the components of biological diversity of relevance to food and agriculture, as well as the components of biological diversity that constitute the agro ecosystem: the variety and variability of animals, plants and micro organisms, at the genetic, species and ecosystem levels, which sustain the functions, structure and processes of the agro ecosystem. Indigenous and traditional agricultural communities throughout the world depend on, and are custodians of, agrobiodiversity maintained within agricultural landscapes through various forms of traditional resource management. These communities are coping with an increasing number of interlocking stresses that result from different aspects of global change, including the problems related to population increase, insecure and changing land ownership, environmental degradation, market failures and market globalization, and protectionist and inappropriate policy regimes and climate change (Morton, 2007). Climate change presents a major concern, often interacting with or exacerbating existing problems. It makes new demands for adaptation and coping strategies, and presents new challenges for the management of the environment and agro ecosystems. Discussions on global policies related to climate change have largely disregarded the potentially negative effects of many of the proposed policies on indigenous and traditional agricultural communities and their livelihoods and rights. Agrobiodiversity has also been largely overlooked in discussions on climate change, despite its importance for the livelihoods of rural communities throughout the world and for the development of adequate adaptation and mitigation strategies for agriculture. The Intergovernmental Panel on Climate Change (IPCC) report (Adger et al., 2007) ignores the role of diversity in production systems and the central role that agrobiodiversity will have to play in both adaptation and mitigation at the country, landscape, community and farmer levels. Indigenous and traditional agricultural communities are adapting to change and are developing ways of strengthening the resilience of agricultural landscapes through various local strategies based on the protection of traditional knowledge and agrobiodiversity. The approaches being adopted include the use of centuries old traditional practices (e.g. the forest management of indigenous Hani people of Yunnan province in China, and 3000 year old Cajete terraces and the associated agricultural system in Mexico) and their adaptation to changing conditions, as well as the development and adoption of new approaches. Over the past two years the Platform for Agrobiodiversity Research has been collecting information on the ways in which indigenous peoples and rural communities have been using agrobiodiversity to help cope with climate change. The information comes from over 200 different stories, reports and articles from many different sources . Here we present an analysis of the information and identify the most important adaptation strategies adopted. We also set out some of the ways in which agrobiodiversity can be used to help improve the adaptability and resilience of the farming systems managed by rural communities and indigenous peoples around the world. A conceptual framework was designed to enable the review of a wide range of community devised strategies employed in agricultural ecosystems and landscapes in different environments (mountains, drylands, forests, wetlands and coastal regions). The results of the review elucidate the intrinsic link between adaptation and the protection of ecosystem, agrobiodiversity and traditional knowledge.

Keywords:

Agro-biodiversity, climate change, Agroforestry, Home gardens and other diversity-rich approaches, Crop, soil and water management, Organic agriculture, Traditional food systems, Pastoralism, Pollinator


UNDERSTANDING ADAPTATION

Together with increasing temperatures, climate change also leads to increasingly unpredictable and variable rainfall (both in amount and timing), changing seasonal patterns and an increasing frequency of extreme weather events, floods, droughts and .re. These can result in decreasing productivity, changing agro-ecological conditions, increasing or altered patterns of pest activity and accelerating rates of water depletion and soil erosion. The changes, and the responses of communities to them, are many and varied in both nature and extent, depending on situation, culture, environment (mountains, drylands, forests, wetlands, coastal), agro-ecosystem, environment and opportunities. In order to understand and analyse the information an appropriate conceptual framework was needed.
The impacts of climate change are felt at the level of the natural resource base upon which rural communities depend, at the farming system level, and at the level of individual species (Vershot et al., 2005). At each level, communities employ a different set of actions to enhance the resilience of local food systems. This grouping of activities into the ecosystem or landscape level, the farm level, and the species level provides a basis for the development of a conceptual framework for helping to understand how communities use agrobiodiversity and ecosystem services to adapt to climate change.
Indigenous and traditional agricultural communities develop their local food systems at the ecosystem or landscape level (or the system level) by managing ecological and biological processes within the system. In this way, they construct niches, shape microclimates, encourage landscape regeneration and influence gene flow. These management activities are often regulated by social institutions, customary laws and cultural values, which encompass traditional agro-ecological knowledge. Based on the feedback from the environment, the management practices are adjusted in a way that supports the maintenance of the ecosystem, helps maintain agrobiodiversity and enhances resilience to climate change (Salick and Byg, 2007). This type of adaptive management is perhaps best understood by using a whole system approach, in which the adaptability and resilience of the system and its components are determined by actions at different levels and interactions within the system, as illustrated in Fig. 1. The system can be an ecosystem, for example a watershed, or an agricultural landscape spreading across ecosystems, for example an agricultural landscape consisting of terrestrial and aquatic components.
Some studies refer to the whole ‘socio-ecological’ system as a way of including the concept of adaptation in environments in which humans are involved. Socio­ecological systems behave as complex adaptive systems, in which the humans are integral components of the system seeking to decrease vulnerability and increase resilience of the system through different management strategies (Walker et al., 2004). The vulnerability of such systems relates to the exposure and sensitivity to perturbation and external stresses, and the capacity to adapt (Adger, 2006). In these systems, resilience can be described as the capacity of a system to absorb recurrent disturbance and reorganize while undergoing change without losing its function, structure, identity and feedback (Walker et al., 2004). The ability of the humans to influence the resilience of the system is referred to as their adaptive capacity (or adaptability). The material within the agro-ecosystem, including species complexes, soil biota and traditional varieties, can also possess greater or lesser adaptability and capacity to evolve and change in the face of changes in temperature, rainfall or other environmental changes.


Figure 1 -Resilience is enhanced through the activities at and between different levels within a system.


Here we use this system-based approach to identify (i) the main adaptation strategies at the levels of the ecosystem, the agricultural system, and inter- and intra-species diversity, and (ii) interactions between the levels that contribute to the resilience of a system. A special focus is put on the social and community dimensions of adaptation discussed in the sections following the results of the analysis. The main patterns and approaches that emerge are illustrated with specific examples taken from the cases studied.

ADAPTATION STRATEGIES
ECOSYSTEM ­ OR LANDSCAPE-BASED APPROACHES

At the ecosystem or landscape level, adaptation activities can reduce the impacts of climate change and buffer their effects, reducing the negative impacts on humans and the environment. A variety of projects have been undertaken to protect and restore ecosystems, rehabilitate degraded landscapes and sustainably manage natural resources. These strategies appear to reduce vulnerability and strengthen resilience of local food systems to floods, droughts, rising sea level and extreme weather events. Examples from forest and mountain ecosystems, coastal areas, drylands and wetlands are given in the following paragraphs.
In Nicaragua, Honduras and El Salvador, where climate change has exacerbated soil erosion and watershed degradation, a forest landscape restoration project has been undertaken. This aimed to increase the resilience of tropical hillside communities by halting deforestation, restoring watersheds, diversifying production systems and encouraging sustainable landscape management (IISD, 2003a). In the Philippines, the Camalandaan Agroforest Farmers Association, a community-based land and resource management organization, have undertaken tree planting and forest protection to reduce sudden onrushes of water (during the rainy season) and depletion of water reserves (during the dry season) (Equator Initiative, 2008b).

In the coastal regions of Asia and Africa, community-based mangrove restoration has been undertaken in Indonesia, Thailand, Cambodia, Kenya, Senegal and Zanzibar. Mangroves function as a protection against storms and can help to mitigate salt water intrusion, coastal erosion and floods.
Restoration of watersheds is helping to reduce vulnerability to climate change-associated stresses in a number of regions. In the drought-prone regions of Maharashtra in India, rehabilitation of a watershed ecosystem conducted on a micro-catchment basis helped to improve soil conditions, increase water availability, regenerate landscape and diversify agricultural production through a number of activities, including water harvesting and the encouragement of natural regeneration (IISD, 2003b).
In many cases, sustainable management practices have been revived and implemented to reduce vulnerability and enhance resilience. In Sudan, a community-based rangeland rehabilitation project aimed at increasing resilience to drought by improving soil productivity through sustainable land management, diversification of production systems, agroforestry and sand dune fixation (IISD, 2003b). In Tibet, pastoralists have engaged in the restoration of peatlands (Wetlands International, 2009). Thousands of hectares have been restored by regulating grazing pressure and erosion. It is believed that this will regulate the .ow of the Yellow and Yangtze rivers, thereby reducing flooding and drought risks for the communities downstream.

IMPROVING THE RESILIENCE OF AGRICULTURAL SYSTEMS

At the level of the agricultural system, adaptation strategies include integration of trees and livestock into production systems; cultivation of a higher diversity of crops (diversification); and improved crop, water and soil management. These are not usually carried out singly but are combined in different ways depending on the ecology, needs of communities, availability of different materials and the challenges faced. Most adaptation initiatives include the use of approaches based on agroforestry and crop diversification, which are often combined with improved crop, soil (including soil biota and nutrients) and water management. Adaptation activities include both the revival of traditional production practices and the adoption and development of new techniques (e.g. a switch to low input agriculture and the use of alternative ways of livestock management). Some examples follow.

Agroforestry

Agroforestry is an increasingly important adaptation strategy for enhancing resilience to adverse impacts of rainfall variability, shifting weather patterns, reduced water availability and soil erosion. In Burkina Faso, to fight desertification and rehabilitate degraded land, trees are planted in the fields and around villages with a traditional water harvesting and soil improvement technique known as zaï. This technique, in combination with crop diversification and other techniques, through innovation and experimentation, has resulted in the development of an integrated agro-sylvo-pastoral system with higher resilience to droughts (Taonda et al., 2001).

Home gardens and other diversity-rich approaches

A number of adaptation case studies emphasize the importance of diverse home gardens in ensuring the family food supply in areas significantly affected by climate change. Examples from Bangladesh describe two types of adaptation strategies for enhancing the resilience of home gardens. In drought-prone regions, the resilience of traditional homestead gardens is strengthened through intercropping of fruit trees with vegetables, small-scale irrigation and organic fertilizers (FAO, 2010a). In the flood-affected regions, floating gardens have been created for cultivation of a mix of traditional crops, including saline-tolerant vegetables such as bitter gourd, red amaranth and kohlrabi. The floating gardens, in combination with alternative farming methods such as duck rearing and fishing, are important source of food during floods (Haq et al., 2009).

Crop, soil and water management

In arid and semi-arid regions, and increasingly in the sub-tropics and the tropics, soil productivity and water availability have decreased due to a combination of climatic and non-climatic factors such as ecosystem degradation and over-exploitation. Improved management of soil and water within cropping systems has helped communities to cope with these problems. In a number of adaptation projects, traditional soil and water management practices involving diversified cropping have been revived. Traditional knowledge is often combined with innovation resulting in better crop, soil, and water management practices. The most common methods for the improvement of soil productivity and water availability are a combination of: minimum soil disturbance, direct seeding or planting, live or residue mulching, cover crops with deeper rooting crops including annual and perennial legumes, micro-catchment water harvesting (e.g. infiltration pits and planting basins) and re-vegetation. These are key elements of practices that have become known as Conservation Agriculture in which ecosystem services are enhanced within the production systems at the farm and landscape level.
In Burkina Faso, to rehabilitate the soil, farmers apply mulch to degraded land, which attracts termites. The termites open burrows through the sealed surface of the soil and slowly improve soil structure and water infiltration and drainage (Ouédrago et al., 2008). In Sri Lanka, saline lands are brought back into production with green manure. Green manures are grown in situ (sunn hemp, green gram, black gram and grasses) or green leaf manure is obtained from trees and bushes around the fields (Vakeesan et al., 2008). In Jamaica, guinea grass mulching is a local strategy adopted in the low-rainfall areas to control soil erosion, increase the water retention capacity of the soil and improve soil structure (FAO, 2010b).
Traditional rainwater harvesting and irrigation systems have been revived and play an important role in augmenting the water supply in water stress-prone environments. In Tunisia, there is an increasing interest in jessour, a traditional system of dams and terraces for collecting run-off water, which enables cultivation of olives, fruit trees, grains and legumes (Reij et al., 2002). In the Andes, the Quechua have revived the waru waru, an ancient cultivation, irrigation and drainage system for increasing the productivity of land with high salinity levels and poor drainage in areas with frequent droughts and frost (Ho, 2002). The waru waru regulate microclimate, soil moisture and pest activity.

Organic agriculture

Farmers’ experiences show that organic agricultural practices, both traditional and innovative, can strengthen the resilience of local food systems. Reports on the importance of organic agriculture come from India, Ethiopia, Bangladesh, Nepal, Honduras, Sri Lanka, Thailand, Nicaragua, Cuba and the Philippines. In Rajasthan, India, an increasing number of small-farmers are adopting vermicomposting – a non-traditional method of improving the nutrient content and water-holding capacity of the soil. This method is combined with cultivation of stress-tolerant crops, crop diversification, green manuring and mulching (Shah and Ameta, 2008). In Nepal, farmers use traditional and non-traditional organic agricultural practices to improve water use efficiency, prevent erosion and improve the productivity of cropping systems (Ulsrud et al., 2008).

Traditional food systems

In traditional food systems a number of methods are used to maintain soil productivity
(e.g. intercropping, crop rotation, fallowing). These practices continue to ensure food and livelihood security under increasing climate change and variability. The United Nations Framework Convention on Climate Change database of local coping strategies includes the following examples of traditional agricultural practices (UNFCCC, 2010).

  • In Tanzania, the Matengo living in the highlands have cultivated steep slope fields for more than a century using a grass-fallow-tied ridge system to grow maize, beans, wheat and sweetpotatoes, all on a rotational basis with a fallow period.
  • In Indonesia, the Kasepuhan of West Java optimally utilise their natural resources through an integrated fish-rice system. Fish-rice farming systems are also used in a number of other Asian countries such as Bangladesh.
  • In Goa, India, the Khazans’ agriculture-aquaculture system, based on the principle of a tidal clock and salinity regulation, ensure sustainable management of resources. on the Indian Andaman and Nicobar Islands farmers cope with the extreme heat and dryness of summer through a number of techniques, including mulching and intercropping of coconut and betel nut seedlings with banana plants.
  • In Bhutan, in periods of food scarcity due to extended dry seasons and infestation by pests and diseases, subsistence farmers rely on wild foods. The farmers cultivate crops, rear livestock, and manage common pool resources such as communal grazing land and communal forests for leaf litter and forest-based food products (wild tubers, fruits, vegetables, medicines etc). In times of crop failure due to delayed or weak monsoon and pests, livestock and wild foods meet the household nutritional requirements.

Pastoralism

Pastoralists in the Sahel, by breeding their herds over many generations in often harsh and variable environmental conditions, developed many different breeds with valuable traits. Traditional pasture and herd management systems include the conservation of natural ecosystems through extensive ranching and rotational grazing, and keeping a mixture of cattle, goats and sheep (Morton, 2007). Due to the effects of climate change, mainly the more frequent occurrence of drought; species and breeds with adaptive traits are becoming increasingly important. In the Ethiopian Borana rangelands, pastoralists have retained their nomadic ways but are replacing their cattle herds with camels, which feed on trees as well as grasses and can survive longer periods without water (New Agriculturalist, 2009a).

Pollinators

During the past few years apple production in Himachal Pradesh, India has been continually declining. A study has shown that this decline in productivity is due to pollination failure (Pratap, 2008). The reasons are lack of trees that can provide fertile compatible pollen and lack of pollinators (bees, butter.ies and moths). To overcome the lack of insect pollinators farmers are renting honeybees, decreasing the numbers of pesticide sprays and carrying out hand pollination (Pratap, 2008).

THE USE OF INTER- AND INTRA-SPECIES DIVERSITY

Maintenance of high levels of inter- and intra-species diversity is a strategy to decrease vulnerability and enhance resilience to climate change and associated stresses. Adaptation activities include the maintenance and reintroduction of traditional varieties, the adoption of new species and varieties to meet newly developed production niches, and the development of ways of ensuring that materials remain available (e.g. community seed banks) and adapted (e.g. participatory plant breeding). Linked to the developed of adapted and adaptable materials have been adjustments in cropping patterns and crop cycle.
As a result of climate change, indigenous and local crops and varieties, particularly drought-, salt- and flood-tolerant, fast-maturing and early- or late-sowing crops and varieties, are increasingly cultivated. Their availability is improved though the establishment of community seed banks. Reports from drought-prone regions of Zimbabwe, India, Nicaragua, Kenya, Vietnam, the Philippines, Mali, the Timor Islands and other countries show an increasing importance of drought-tolerant crop varieties of millet, sorghum and rice. The reports also mention other drought-tolerant species and varieties of cereals, fruit and vegetables as well as wild species. In Botswana and Namibia, drought-tolerant wild fruit tree species (e.g. Sclerocarya birrea, local name: morula; Azanza garckeana, local name morojwa) are planted around the villages with the aim of domesticating them (Bonifacio and Zanini, 1999). In the areas experiencing an increased level of flooding and salinization of freshwater and agricultural land; salt- and flood-tolerant crops and varieties have been introduced. In India, community seed banks with a focus on rice have been established to strengthen the community seed supply of flood-resistant varieties in Bihar and Bengal and saline-resistant varieties in Orissa (Navdanya, 2009).
Several reports indicate a switch to short-duration varieties and adjustments in planting and harvesting dates as a response to a decreasing length of growing season and changes in seasonal patterns of precipitation and temperature. In India, in areas where crops had failed due to heavy rainfall during the pod formation stage, farmers have switched to short-duration varieties and adjusted sowing depth and date (unpublished data). In Cambodia, there is a shift in the planting date of rice; rice seedlings are planted in November instead of in September (Mitin, 2009). In Ghana, farmers are planting early maturing crops and sowing the seeds earlier than in previous years (Mapfumo et al., 2008).
In Uttar Pradesh, in the foothills of the Himalayas, communities are experiencing an increasing frequency of flash floods; dry spells during floods; changes in flood timing (longer, delayed or early); increased duration and area of waterlogging; and changes in time, volume, and pattern of rainfall. Adaptation to climate change required the development of a new crop calendar as illustrated below (Wajih, 2008). Crops that are fast-maturing, flood-tolerant and with soil-rehabilitating characteristics are planted according to the calendar.

Adapted from Wajih, 2008
The selection of new varieties by farmers and participatory plant breeding (PPB) are supporting adaptation to changing production environments. Often, adaptation and selection of traditional varieties is associated with on-farm conservation activities. In Bangladesh, the development of short-duration rice varieties formed part of the adaptation strategies of people living in the Gaibandha district of the Char islands, where there has been an increase in the land area affected by major floods from 35% in 1974 to 68% in 1998. on Timor Island, to strengthen the resilience of agriculture to erratic rainfall, farmers have developed their own varieties of maize, sorghum, foxtail millet, dryland rice and cassava (Kieft, 2001).
In Nepal, changes in the monsoon pattern have caused a disruption to rain-fed agricultural systems and exacerbated genetic erosion of local landraces with drought-resistant and lodging-tolerant characteristics. Farmers have responded by establishing a seed bank and engaging in a PPB programme. A total of 69 rice varieties have been revived and stored at the seed bank (Ulsrud et al., 2008).
In Honduras, farmers organized community-based agricultural research teams, to diversify their plant genetic resources and develop hardier plant varieties that grow well on their soils. Responding to the higher occurrence of hurricanes, farmers were able to produce improved maize varieties through a participatory breeding process that are shorter and capable of withstanding the physical trauma brought by the hurricanes, with a higher yield and yet are still adapted to high-altitude conditions. The selection process was accompanied by a conservation effort, as the seeds of the selected species are stored in a community seed bank, assuring availability of healthy and resistant plants (USC Canada, 2008).
In several countries the System of Rice Intensification (SRI), a different rice agronomy that also works well with traditional varieties, is spreading and already raising productivity and income of more than 1 million small indigenous and traditional farmers around the world on over 1 million hectares. SRI benefits derive from changes in the ways that their existing resources are used through a set of modified agronomic practices for managing rice plants and the soil, water and nutrients that support their growth.

Some of the main adaptation strategies at different levels
Ecosystem or landscape

Activities at the ecosystem and landscape level aim to mitigate and buffer the effects of climate change through ecosystem protection and restoration, landscape rehabilitation and the sustainable use of natural resources. Examples are:

  • Reforestation of tropical hillsides, riparian forests and mangroves.
  • Rangeland rehabilitation and improved pasture management.
  • Restoration of wetlands, peatlands, watersheds and coral reefs.
  • Re-vegetation in drylands.

Agricultural systems
At the agricultural system level, the resilience of local food systems is enhanced through the diversification and sustainable management of water and soil. Commonly employed strategies are:

  • Diversification of agricultural landscapes (agroforestry).
  • Diversification of production systems (cultivation of a higher diversity of crops and varieties and crop-livestock-trees integration.
  • Low-input agriculture, soil conservation and improved water management and use efficiency (mulching, cover crops, rainwater harvesting, re-vegetation, fallow, intercropping, crop rotation).
  • Adjustments in crop and herd management (changes in crop cycle).

Intra- and inter-species diversity

Intra- and inter-species diversity is protected, used and redistributed to strengthen the resilience of agricultural systems and maintain production in stress-prone environments. The main adaptation measures are:

  • Use of stress-tolerant and fast-maturing crop species and varieties; and stress-tolerant species and breeds of cattle.
  • Protection, reintroduction and distribution of traditional crops through community seed banks and on-farm conservation.
  • Stress tolerance improvement through farmers’ selection and participatory plant breeding.

A WHOLE SYSTEM APPROACH

The main types of responses to climate change identified in the previous section illuminate the cross-scale processes, providing an insight into the adaptation dynamics (Fig. 2). The interplay between adaptation strategies at different levels contributes to the resilience of the whole system through (i) the links between natural and cultivated landscapes; (ii) the supportive role of agriculture in the protection and restoration of ecosystems; and (iii) the maintenance of species and genetic diversity.


Figure 2 – Adaptation dynamics.


THE LINKS BETWEEN NATURAL AND CULTIVATED LANDSCAPES

In many traditional agricultural landscapes, the wild and cultivated areas are integrated under a management system to complement each other. For instance, the common practice of rotational farming (shifting cultivation) exemplifies a situation in which it is often difficult to distinguish between cultivated and wild or natural landscapes. Within cultivated fields, where crops are planted, wild species are also recruited and tended. Various forms of forests and individual trees, though not planted, are cared for, managed and used for food, fuel, medicine, timber and various other necessities (Rerkasem et al., 2009).
The wild areas provide services essential for the resilience of the cultivated regions including erosion control, microclimate regulation, pest regulation and pollination. Wild species provide alternative sources of food and income during the periods of bad harvest or herd loss due to unfavourable weather conditions. Many communities harvest wild vegetables, fruits, tubers and other edibles from the forest during the year, especially during the season of greatest food scarcity.
Wild species with traits such as tolerance of extreme temperatures and salinity are becoming increasingly important resources for communities. In Bangladesh flood-affected communities cultivate saline-tolerant varieties of reeds and saline-tolerant and drought-resistant fruit and timber trees, to reduce vulnerability to floods and sea-level rise and ensure longer-term income generation. This involved the establishment of community tree nurseries and distribution of indigenous varieties of coconut, mango and other fruit species as well as mangrove-associated species (Selvaraju et. al., 2006).

THE ROLE OF AGRICULTURE IN ECOSYSTEM PROTECTION AND RESTORATION

Sustainable types of agriculture can reduce the adverse impacts of climate change on fragile ecosystems and encourage rehabilitation of degraded landscapes, as illustrated by the following examples. In Rajasthan, India, where drought and environmental degradation severely impaired the livelihood security of local communities; a community-led, watershed-restoration programme reinstated johads, a traditional rainwater-harvesting system. Johads are simple concave mud barriers, built across small, uphill river tributaries to collect water and encourage groundwater recharge and improve forest growth, while providing water for irrigation, domestic use, livestock and wildlife (McNeely and Scherr, 2001). Restoration of over 5000 johads in 1000 villages has resulted in the restoration of the Avari River and the return of native bird populations (Narain et al., 2005). In Honduras and Nicaragua, an increasing number of farmers are abandoning the slash-and-burn technique and adopting the Quezungal slash-and-mulch agroforestry system, which draws on traditional practices of tree management and reduces crop damage caused by natural disasters (Bergkamp et al., 2003). In Honduras, the result has been the natural regeneration of around 60 000 ha of secondary forest, restoration of soil quality, and consequently better crop yields (New Agriculturalist, 2009b).

THE MAINTENANCE OF SPECIES AND GENETIC DIVERSITY

Cultivation of a high level of diversity in an agricultural system strengthens the system’s resilience. In turn, agricultural systems with diverse species and varieties of crops and livestock provide for the maintenance (in situ conservation) of diversity and the evolution of continually adapted populations. In many cases, introgression of genes from wild relatives or cross pollination results in new genotypes or helps to maintain the broad genetic base within crops In situ conservation of the agricultural diversity of genes and species often occurs within a mosaic of agricultural landscapes consisting of home gardens, fields, groves and orchards, and boundaries and niches that create diverse selection and adaptation factors through exposure to the environmental change. An example of the importance of genetic diversity has been the maintenance of traditional pearl millet and sorghum varieties in Niger and Mali over the past 20-30 years. While varietal identity has often altered over this period, total diversity and average yields have remained broadly unchanged, despite periods of significant drought and the occurrence of other environmental and social stresses. It appears these materials show sufficient adaptability to enable farmers to cope, at least partially, with periods of significant rainfall shortage and that farming practices and local institutions have favoured the maintenance of diversity (Kouressy et al., 2003; Bezançon et al., 2009). Interestingly, in both countries, there was some loss of long-duration types with an apparent increasing preference for rapidly maturing varieties.

COMMUNITY DIMENSION OF ADAPTATION

Adaptive management of agrobiodiversity involves activities at both the individual and community levels. At the individual farmer level, agricultural systems are diversified and various management practices adjusted. However, the adaptive management of water, soil and agrobiodiversity takes place at the ecosystem or landscape level and requires communal efforts, often regulated through social institutions. Local institutions that endorse the sustainable management of agrobiodiversity and landscapes have been re-established in several adaptation projects. In Niger, the Tuareg nomads have protected and improved their pastureland through pasture-management associations; thereby strengthening the resilience to both climatic and non-climatic pressures (New Agriculturist, 2009a). In a mountainous region of Ecuador, a community-based initiative has promoted sustainable use of resources to prevent ecosystem degradation resulting from inappropriate agricultural practices and overgrazing (Equator Initiative, 2004). The Turkana pastoralists in northern Kenya, and Sukuma agro pastoralists in Shinyanga, Tanzania, have restored degraded woodlands through the revival of local institutions for natural resource management (Barrow and Mlenge, 2003). The Turkana restored over 30 000 ha and the Sukuma 250 000 ha of woodland; which has resulted in a mitigation of risks associated with droughts (ibid).
The need to replenish diversity in agricultural systems has encouraged the community management of genetic resources. This has resulted in the establishment of community seed banks to facilitate the revival and distribution of traditional and stress-tolerant crops and varieties. In Uttar Pradesh, India, the establishment of seed banks to facilitate the diversification of local food systems is one of the flood coping mechanisms (Wajih, 2008).
Just as local crops and varieties needed to be reintroduced or new crops introduced, in some cases, traditional practices have also had to be adjusted. Indigenous forecasting techniques have become less reliable due to the increasing variability and irregularity of rainfall. Many Javanese farmers base their planting schedule on the Javanese lunar cyclical calendar, as well as observations of the environment, yet both are becoming unreliable. Instead of relying on observations that used to indicate the start of the rainy season such as falling leaves, singing birds or noisy insects, the farmer began using climate forecasts and other agro-meteorological information (Winarto et al., 2008). In other places farmers have begun documenting climate change impacts at local level (Ulsrud et al., 2008).

WOMEN’S ROLE IN ADAPTATION

Many projects concerned with the protection of agrobiodiversity are initiated and managed by local women’s groups. In India, women have initiated and engaged in a number of adaptation projects, which involve the revival of traditional seeds and the establishment of community seed banks. In Sri Lanka, a women-led project has been promoting the cultivation of indigenous roots and tuber crops, organic agriculture and integrated pest management, and seed bank establishment (Equator Initiative, 2008c). Women’s groups are also involved in ecosystem protection and restoration projects. An example comes from Senegal, where a collective of women’s groups in nine villages manages mangrove nurseries and reforestation. The group has made significant contributions towards restoring the mangroves and protection of biodiversity, which has encouraged the return of wildlife (Equator Initiative, 2008d).

INTEGRATING ADAPTATION AND LIVELIHOODS WITH THE PROTECTION OF INDIGENOUS PEOPLES’ RIGHTS

Adaptation projects are closely linked to the initiatives aiming to protect traditional knowledge and indigenous people’s rights. Many adaptation projects are initiated, supported and carried out by indigenous communities trying to protect their rights to ancestral lands and culture. In the Philippines, an organization of the Kalinga indigenous peoples, working on, among other issues, the protection of biodiversity and indigenous rights, is engaged in a number of activities of critical importance to the resilience of local food systems such as watershed rehabilitation, reforestation, and rice terrace rehabilitation. The organization aims to achieve sustainable livelihoods through the indigenous forest, watershed, irrigation and ecoagriculture management systems; and protect the rights of Kalinga indigenous peoples and their ownership over ancestral lands (Equator Initiative, 2004a).
In Colombia, Panama, Peru, Bolivia, Ecuador, Thailand, India and other countries, indigenous organisations are actively involved in the protection of traditional knowledge and reintroduction of indigenous crop varieties of vegetables, tubers, grains, beans and fruit. The Potato Park in Cusco, Peru was created in 2005 to protect the genetic diversity of local potato varieties and associated indigenous knowledge. The project demonstrates the link between the protection of agrobiodiversity and the protection of indigenous people’s rights, livelihoods and culture. Indigenous Quechua communities involved in the project have brought back from a gene bank into their fields over 400 potato varieties to ensure the adaptation to changing climatic conditions (Argumedo, 2008). The park has organised indigenous technical experts to monitor changes and identify responses and innovations that are consistent with the cultural imperatives and livelihood needs of Andean communities (ibid).

CONCLUSIONS

Three general conclusions can be drawn from this analysis of the different ways in which indigenous and traditional agricultural communities are coping with climate change. Firstly, adapting to climate change has usually involved a range of different actions at all three levels; ecosystem or landscape, farm or agricultural system, and involving both inter- and intra-specific diversity. Secondly, innovation based on both traditional knowledge and new information has been important, and social (e.g. community) cultural and political dimensions have played a key role. Thirdly, use of traditional crop and livestock species and varieties, with new materials where necessary, has been a common feature. From these follow a number of specific conclusions that can provide a basis for action to support adaptation by indigenous and traditional agricultural communities.

  • The resilience of local food systems and their adaptation to change can be enhanced through a strategy of diversification within landscape and agricultural system or farm. This may be achieved using a range of different approaches including agroforestry, maintenance of a diversity of crop species and varieties, and increased use of agro-ecosystem-associated biodiversity and is equally appropriate in dryland, mountain, humid tropic and coastal environments.
  • Ecosystem protection and restoration, landscape rehabilitation and reforestation can reduce the adverse effects of climate change on local food systems. They reduce the vulnerability to extreme weather events, drought, excessive rainfall and seawater intrusion, and help ensure ecosystem services such as pollination, pest regulation and erosion control.
  • Resilience and adaptability seem to be enhanced by the use of sustainable agricultural practices (e.g. low-input agriculture). High-input agricultural practices and the ecosystem degradation often associated with their use accelerate the loss of agrobiodiversity, soil erosion and water depletion, and thereby aggravate the vulnerability of traditional agricultural communities to climate change.
  • Adaptation involves the continuing maintenance in production systems of intra- and inter-species diversity using traditional crop and livestock species and varieties and access to new diversity. Maintenance of sufficient diversity allows farmers to improve stress tolerance through selection and breeding techniques, and enables the natural process of adaptation to operate under the changing agro-ecological conditions. Access to new crop and livestock materials can also be an important part of coping strategies.
  • Adaptation solutions are local. Protection and restoration of ecosystems, diversification of agricultural landscapes and the protection and use of agrobiodiversity de.ne an adaptation framework that can be applied in different environments. However, the choice and design of specific strategies are based on local experiences of climate change, needs, resources, knowledge and agricultural traditions.
  • Adaptation activities are undertaken at the community level. Many of the challenges cannot be met at the level of the individual or farm and require community involvement. Community institutions play an important part in adaptation. Women as custodians of agrobiodiversity often play a key role in adaptation activities.
  • The need to adapt to climate change has often led to the revival of traditional practices and agricultural systems. Traditional agricultural practices and land-management techniques, especially in stress-prone environments, can help ensure productivity under adverse conditions through the management of microclimate and soil and water resources.
  • The continuous process of innovation required to cope with climate change involves the use of traditional knowledge combined with access to new knowledge. Local management systems of ecosystems, landscapes, agricultural systems and genetic material are often harmonised with and adjusted to changing agro-climatic conditions. At the same time new knowledge is also needed to cope with changing circumstances and the introduction of new materials.
  • Local agrobiodiversity-based solutions create opportunities for integration of adaptation and protection of indigenous peoples’ rights. Many adaptation initiatives mentioned in this paper are initiated, supported or managed by indigenous communities. Their adaptive capacity often depends on their ability to access their ancestral lands and protect their cultural heritage.

There remain a number of areas where we urgently need further work. one particular area is the social, cultural and political dimensions of adaptation. In a number of cases it is clear that an innovation based on traditional knowledge can lead to development of local adaptation measures that protect ecosystems and agrobiodiversity, and empower indigenous and traditional agricultural communities. This link between empowerment of communities and adaptation needs to be better understood. There is also a need to develop indicators of adaptation, adaptability and resilience that are useful at different levels and some communities and groups have already embarked on this. These indicators will help to identify what contribution agrobiodiversity can make and where it is likely to be most useful.
From the conclusions listed above it is possible to identify the kinds of activities that are likely to support the use of agrobiodiversity by traditional rural communities and indigenous peoples as part of their coping strategies. The support for, and maintenance of, local social and cultural institutions can obviously play an important part. Empowering communities so as to enable them to carry out interventions at ecosystem or landscape level can also be important. The need to ensure continuing access to a range of diverse crop varieties, agroforestry species and livestock types and their maintenance, is essential. This may best be combined with the further development of such materials through locally based selection or breeding activities. Way of supporting the maintenance of traditional knowledge combined with access to new information will be important as part of adaptation, as will the development and adoption of locally appropriate improved agronomic practices.
The results and conclusions show that agrobiodiversity has a key role to play in adaptation to climate change and to improving adaptability and resilience in agro ecosystems. It is essential that international and national policy debates on adaptation to climate change begin to take account of the rich experience and the actions already undertaken by traditional communities and indigenous peoples and to ensure their full involvement in debates on policies and actions required.

REFERENCES

Adger WN, Agrawala S, Mirza MMQ, Conde C, O’Brien K, Pulhin J, Pulwarty R, Smit B, Takahashi K. 2007. Assessment of adaptation practices, options, constraints and capacity. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK, 717-743.
Adger WN. 2006. Vulnerability. Global Environmental Change 16(3):268–281.
Argumedo A. 2008. Association ANDES: Conserving indigenous biocultural heritage in Peru. IIED Gatekeeper Series/International Institute for Environment and Development, Sustainable Agriculture Programme No. 137a. IIED. Natural Resources Group and Sustainable Agriculture and Rural Livelihoods Programme, London, UK.
Barrow E, Mlenge W. 2003. Trees as key to pastoralist risk management in semi-arid landscapes in Shinyanga, Tanzania and Turkana, Kenya. Presented at the CIFOR-FLR Conference, Bonn, Germany, May 2003.
Bergkamp G, Orlando B, Burton I. 2003. Change: adaptation of water resources management to climate change. IUCN, Gland, Switzerland.
Bezançon G, Pham JL, Deu M, Vigouroux Y, Sagnard F, Mariac C, Kapran I, Mamadou A, Gérard B, Ndjeunga J, Chantereau J. 2009. Changes in the diversity and geographic distribution of cultivated millet (Pennisetum glaucum (L.) R. Br.) and sorghum (Sorghum bicolor (L.) Moench) varieties in Niger between 1976 and 2003. Genetic Resources and Crop Evolution 56:223–236.
Bonifacio E, Zanini E. 1999. Sustainable domestication of indigenous fruit trees: the interaction between soil and biotic resources in some drylands of southern Africa. UNESCO Best Practices on Indigenous Knowledge.
Equator Initiative. 2004. Asociación de Trabajadores Autónomos San Rafael – Tres Cruces – Yurac Rumi (ASARATY) – Ecuador. http://equatorinitiative.org/index.php?option=com_content&view=article&id=491& Itemid=531&idx=49. Accessed 11 March 2010.
Equator Initiative. 2004a. Kalinga Mission for Indigenous Children and Youth Development, Inc. – Philippines. http://www.equatorinitiative.org/index.php?option=com_content&view=article&id=482:kamicydi&catid=1 05:equator-prize-winners-2004&Itemid=541&lang=es. Accessed 11 March 2010.
Equator Initiative. 2008b. Camalandaan Agroforest Farmers Association – Philippines. http://equatorinitiative. org/index.php?option=com_content&view=article&id=530&Itemid=531&idx=86. Accessed 10 March 2010.
Equator Initiative 2008c. Community Development Centre – Sri Lanka. http://equatorinitiative.org/index. php?option=com_content&view=article&id=527&Itemid=531&idx=87. Accessed 11 March 2010.
Equator Initiative 2008d. Fédération Régionale des Groupements de Promotion Féminine Ziguinchor. http:// equatorinitiative.org/index.php?option=com_content&view=article&id=520&Itemid=531&idx=81. Accessed 25 February 2010.
FAO. 2010a. Homestead gardens in Bangladesh. Technology for agriculture. Proven technologies for small holders. http://www.fao.org/teca/content/homestead-gardens-bangladesh. Accessed 24 April 2010.
FAO. 2010b. Incorporation of tree management into land management in Jamaica – guinea grass mulching. Technology for agriculture. Proven technologies for small holders. http://www.fao.org/teca/content/ incorporation-tree-management-land-management-jamaica-%C2%BF-guinea-grass-mulching. Accessed 24 March 2010.
Haq R, Kumar T, Ghosh P. 2009. Soil-less agriculture gains ground. LEISA Magazine 25(1):35.
Ho R. 2002. Waru waru, a cultivation and irrigation system used in flood-prone areas of the Altiplano. In: Boven K, Morohashi J, editors. Best practices using indigenous knowledge. Nuffic, the Hague, the Netherlands and UNESCO/MOST, Paris, France.
IISD. 2003a. Increasing the resilience of tropical hillside communities through forest landscape restoration. Climate change, vulnerable communities and adaptation. IISD Information Paper 2.
IISD. 2003b. Sustainable drylands management: a strategy for securing water resources and adapting to climate change. Climate change, vulnerable communities and adaptation. IISD Information Paper 3.
Kieft J. 2001. Indigenous variety development in food crops strategies on Timor: their relevance for in situ biodiversity conservation and food security. Indigenous Knowledge and Development Monitor 9-2.
Kouressy M, Bazile D, Vaksmann M, Soumare M, Doucoure T, Sidibe A. 2003. La dynamique des agroécosystèmes : un facteur explicatif de l’érosion variétale du sorgho Le cas de la zone Mali-Sud. In: Dugué P, Jouve Ph, éds. Organisation spatiale et gestion des ressources et des territoires ruraux. Actes du colloque international, 25-27, Montpellier, France. Umr Sagert, Cnearc.
Mapfumo P, Chikowo R, Mtambanengwe F, Adjei-Nsiah S, Baijukya F, Maria R, Mvula A, Giller K. 2008. Farmers’ perceptions lead to experimentation and learning, LEISA Magazine 24(4):30-31
McNeely JA, Scherr SJ. 2001. Common Ground, Common Future. How ecoagriculture can help feed the world and save wild biodiversity. IUCN – the World Conservation Union, Future Harvest.
Mitin A, 2009. Documentation of selected adaptation strategies to climate change in rice cultivation. East Asia Rice Working Group. http://www.eastasiarice.org/Books/Adaptation%20Strategies.pdf. Accessed 22 March 2010.
Morton JF. 2007. The impact of climate change on smallholder and subsistence agriculture. Proceedings of the National Academy of Science USA 104:19680-19685.
Narain P, Khan MA, Singh G. 2005. Potential for water conservation and harvesting against drought in Rajasthan, India. Working paper 104, Drought series: paper 7. International Water Management Institute, Sri Lanka.
Navdanya. 2009. www.navdanya.org. Accessed 26 March 2010.
New Agriculturalist. 2009a. Pastoralists: moving with the times? http://www.new-ag.info/focus/focusItem. php?a=966. Accessed 18 March 2010.
New Agriculturalist. 2009b. Ancient lesson in agroforestry – slash but don’t burn. http://www.new-ag.info/ focus/focusItem.php?a=1030. Accessed 18 March 2010.
Ouédrago E, Mando A, Brussard L. 2008. Termites and mulch work together to rehabilitate soils. LEISA Magazine 24(2):28.
Pratap U. 2008. Successful pollination of apples. Bees for Development Journal. http://www. beesfordevelopment.org/info/info/pollination/successful-pollination-of.shtml. Accessed 30 March 2010.
Reij C, Nasr N, Chahbani, B. 2002. Innovators in land husbandry in arid areas of Tunisia. In: Boven K, Morohashi, J, editors. Best practices using indigenous knowledge. Nuf.c, the Hague, the Netherlands, UNESCO/MOST, Paris, France.
Rerkasem K, Yimyam N, Rerkasem B. 2009. Land use transformation in the mountainous mainland Southeast Asia region and the role of indigenous knowledge and skills in forest management. Forest Ecology and Management. 257:2035–2043.
Salick J, Byg A. 2007. Indigenous peoples and climate change. University of Oxford, Oxford and the Missouri Botanical Garden, Missouri.
Selvaraju R, Subbiah AR, Baas S, Juergens I. 2006. Livelihood adaptation to climate variability and change in drought-prone areas in Bangladesh – case study. FAO, Rome, Italy.
Shah R, Ameta N. 2008 Adapting to change with a blend of traditional and improved practices. LEISA Magazine 24(4)9-11.
Taonda J-B, Hien F, Zango C. 2001. Namwaya Sawadogo: The ecologist of Touroum, Burkina Faso. In: Reij C, Waters-Bayer A, editors. Farmer innovation in Africa: a source of inspiration for agricultural development. Earthscan, London, UK.
Ulsrud K, Sygna L, O’Brien K. 2008. More than rain: identifying sustainable pathways for climate adaptation and poverty reduction. The Development Fund/Utviklingsfondet. http://www.utviklingsfondet.no/English/For_ partners/Lessons_learnt/More_than_Rain. Accessed 7 March 2010.
UNFCCC. 2010. The UNFCCC local coping strategies database. http://maindb.unfccc.int/public/adaptation/. Accessed 5 March 2010.
USC Canada. 2008. Growing resilience: seeds, knowledge and diversity in Honduras. Canadian Food Security Policy Group. http://www.ccic.ca/_.les/en/working_groups/003_food_2009-03_case_study_honduras.pdf. Accessed 7 March 2010.
Vakeesan A, Nishanthan T, Mikunthan G. 2008. Green manures: nature’s gift to improve soil fertility, LEISA Magazine 24(2)16-17.
Vershot LV, Mackensen J, Kandji S, Noordwijk M, Tomich T, ong C, Albrecht A, Bantilan C, Anupama KV, Palm C. 2005. Opportunities for linking adaptation and mitigation in agroforestry systems. http://www. worldagroforestry.org/downloads/publications/PDFS/BC04241.pdf. Accessed 1 March 2010.
Walker B, Holling CS, Carpenter SR, Kinzig A. 2004. Resilience, adaptability and transformability in social-ecological systems. Ecology and Society 9(2):art. 5.
Wajih SA. 2008. Adaptive agriculture in flood affected areas. LEISA Magazine 24(4):24-25
Winarto YT, Stigter K, Anantasari E, Hidayah SN. 2008. Climate field schools in Indonesia: improving “response farming“ to climate change. LEISA Magazine 24(4)24-25.
Wetlands International. 2009. www.wetlands.org. Accessed 8 March 2010.

ACKNOWLEDGEMENTS: This paper synthesizes the results of work undertaken by the Platform for Agrobiodiversity Research as part of its project on “The use of agrobiodiversity by indigenous peoples and rural communities in adapting to climate change”. An earlier version of the paper was discussed during a workshop held in Chiang Mai, Thailand in June 2009. The financial, scientific and technical support of the Christensen Fund, Bioversity International and the Chiang Mai University are gratefully acknowledged. The paper was prepared by Dunja Mijatovic with assistance from Paul Bordoni, Pablo Eyzaguirre, Elizabeth Fox, Sara Hutchinson, Frederick van Oudenhoven and Toby Hodgkin.
Photographs: cover, page 27 ©FAO/Peter DiCampo; page 5 ©Tim Murray; page 8, 26 ©FAO/Pietro Cenini; page 3, 10, 17, 21 ©Paola De Santis; page 13 ©FAO/E.Yeves; page 14, 19 ©FAO/Giulio Napolitano; page 24 ©PAR/Paul Bordoni.

728x90
728x90

조선 주요 농작물의 품종명에 대하여

 

 

 

서선지장 다카하시 노보루

 

 

1. 머리말

 

 

작물의 품종명은 본래 다른 형태와 성질을 지닌 많은 품종을 서로 구별하려고 편의에 따라 붙인 이름이다. 그래서 똑같은 이름으로 다른 두 개 이상의 품종을 부르거나 또는 동일한 성질을 지닌 품종을, 지방에 따라 사람에 따라서 다른 이름으로 부른다면, 동일 품종이 다른 품종으로 취급되거나 또는 다른 품종이 동일 품종처럼 고려되어 기술적으로 정확한 인식을 어지럽히기에 농사를 지도할 때 기술자와 보조를 맞출 수 없다.

또 당 업자가 다른 품종을 똑같은 품종으로 오해해 그것을 혼동한다면, 생산물의 품질은 뚜렷하게 좋지 않아져, 상품으로의 가치가 실추될 것이기에, 상거래에서도 손실을 불러올 것이고, 따라서 농작물의 품종명은 농업에서만이 아니라 상거래에서 보아도 그것을 정리·통일할 필요가 있을 것이다.

미국 등에서는 주요 작물에 품종 명명 규정이 협정되어 있어 작물 품종, 특히 신품종에 대해서는 적당한 이름을 부여하여 등록하도록 되어 있고, 최근에는 신품종의 특허권을 인증하는 법률을 제정해 이미 몇 종의 작물 신품종이 등록되어 있다.

우리나라에서도 품종명을 정리·통일할 필요가 있는 것은 여러 번 역설한 바이며, 논벼 등에는 육성 신품종의 명명 등에 대한 협정이 있지만 아직 신품종의 특허권을 인증하는 법률 등은 제정되어 있지 않다.

조선에서는 이전에 1915년 각 도 기술관 회의에서 ‘작물 품종명을 하나로 정하는 건’이 협정되고, 요즘은 1927년 각 도 농사시험장 주임 토론회에서 ‘품종명 통일에 관한 건’이 제의·협정을 거쳤다. 앞에서는 논벼 두 품종, 목초 2품종, 사과, 배, 귀라 각 1품종의 이름을 하나로 정하고, 뒤에서는 장려품종의 이름을 함부로 바꿀 수 없다는 것 및 순계선택 또는 인공교배로 육성한 신품종의 명명에 대해 협정을 했는데, 일반 재래종에 대해서는 단순히 지방 농사시험장에서 동종 이명, 이종 동명을 정리하는 것을 합의하는 수준에 그쳤다.

재래종 이름의 정리·통일은 품종의 특성 조사 또는 품종의 분류와 서로 맞추어 행해야 하기에, 조선 재래 작물 품종과 같이 종마다 다양한 이름으로 불리고 있고, 또 현존 품종의 수도 꽤 많은 것은 매우 곤란한 사정이라고 할 수 있다. 그러나 일반 농가나 농업기술자 들이 품종의 이름을 바르게 정할 수 있을 정도의 실제적 품종 분류 방식이 확실해지는 한편 품종명 명명의 표준이 규정되었다면, 일반에 이바지하게 처결할 것이다.

종래 본부 또는 지방 농사시험장에서 발표한 재래 작물 품종의 조사나 품종명 통일 등에 관한 보고서는 꽤 많은데, 한두 개를 제외하고는 단순하게 품종의 특성을 기재하는 데 그쳤고, 나아가서 품종명의 정리·통일을 시도한 것은 없으며, 조사의 범위가 대개는 한 도로만 좁히고 있기에 조사 품종 수가 비교적 적다.

필자는 지금까지보다 더 조선 재래 작물 품종의 조사를 행했는데, 아직 완료하지는 못했지만 여기에서는 단순히 조선 재래 작물 품종의 이름이 과거 및 현재에 어떻게 불리고 있는지 그것을 정리·통일을 행하려 하는데, 괜찮다면 채택할 수 있는 적당한 품종명은 어떤 것일지 등에 대하여 대강 서술하고, 끝에 작물 품종 명명 규정에 대한 내 견해를 들어서 학문이 높은 분들의 비판을 얻고자 한다.

 

 

 

2. 조선 고농서 안의 주요 작물 품종명과 그 해설

 

 

조선의 옛 농서 안에 작물의 품종명 또는 특성을 기재하고 있는 것은, 필자가 조사한 범위에서는 ‘농사직설’ ‘금양잡록’ ‘산림경제’ ‘해동농서’ ‘임원경제지’의 다섯 종류에 지나지 않는다.

이러한 농서의 편저자나 발행 연대 등에 대해서는 사람에 따라 의견의 차이가 있는데, ‘농사직설’은 지금으로부터 약 500년 전 조선의 세종 때 관찬된 것으로, ‘금양잡록’은 약 450년 전 곧 조선 성종 24년 경상남도 진주 사람 강희맹이 지었다고, 산림경제의 편자는 박세당(현종 14년 지금으로 따지면 약 250년 전)이라고 한다.

‘해동농서’는 편자 연대 불명인데, 그 내용 특히 작물 품종의 해설 등에서 보면 ‘산림경제’ 이후에 나왔다고 보인다. ‘임원경제지’는 앞에 적은 서적에 비교하면 매우 근대의 것이 틀림없다. 작물 품종명도 현재 일반에서 부르는 것이 여러 개 기재되어 있고, 또 중국의 농서에서 인용하여 조선에 소개된 벼의 품종만도 약 100종을 들고 있는 점 등에서 볼 때 아마 조선 말기에 작물의 품종 개량이란 면에서 지금으로부터 약 80년 전후에 나온 것이라 생각한다.

‘농사직설’에는 벼, 보리, 콩 등의 품종명은 아직 기재되지 않고, 겨우 조의 품종명이 2종 열거되었을 뿐이다. ‘금양잡록’에는 벼, 조, 콩, 팥, 밀, 보리 등 여러 품종이 기재되어 있다. 그 뒤에 나왔다고 생각하는 ‘산림경제’나 ‘해동농서’ 등에는 모두 여러 품종을 기재하고 있는데, 대개는 ‘금양잡록’의 품종명이나 그 해설과 완전히 똑같은 것이 많은데. 연대가 얼마 되지 않은 농서인만큼 기재된 품종 수가 많아 옛날 농서에 기재된 품종 이외에 신품종이 추가되어 있다.

지금 이러한 농서에 기재되엉 있는 벼, 조, 콩, 밀, 보리의 품종 수와 다른 이름 수를 들면 다음과 같다.

 

밀·보리

농사직설

0

2

0

0

2

금양잡록

27

15

9

5

56

산림경제

34

14

8

4

60

해동농서

37

15

9

4

65

임원경제지

68

조사 못함

조사 못함

조사 못함

68

다른 이름 수

92

24

14

5

135

 

곧 다른 이름은 모두 135종이고, 그 가운데 벼 92종, 조 24종, 콩 14종, 밀·보리 5종이다. 그것들의 품종에는 모두 하나하나 해설이 붙어서, 그 특성 기재 항목도 제법 상세하고, 현대에 있는 작물 품종의 특성 조사 항목에 필적한다. 곧 작물별로 특성 기재 항목을 예거하면 다음과 같다.

 

1. 벼 : 논벼·밭벼. 찰벼·메벼. 까락이 있는지 없는지, 긴지 짧은지. 덜 익었을 때의 까락과 껍질 색깔. 껍질의 두께. 마디의 색. 이삭에 붙은 낟알의 밀도. 쌀알의 크기, 모양. 쓿지 않은 쌀의 속껍질 두께. 미질. 쌀의 색과 향, 빛깔. 맛, 쓰는 데. 도정수율. 심는 때. 익음때. 짚의 강약. 내풍성. 모내기, 곧뿌림, 건답에 대한 알맞음. 산지 등

 

2. 조 : 차조·메조. 이삭 수염의 길이, 있는지 없는지. 줄기 색. 껍질 색. 알곡 색. 이삭 길이. 이삭 모양. 심는 때. 익음때. 알맞은 땅 등

 

3. 콩 : 알 색. 알의 크기. 꼬투리 색. 잔털의 색과 많고 적음. 맛, 쓰는 데. 심는 때. 기르는 법. 알맞은 땅 등

 

4. 밀·보리 : 생육 습성 곧 가을 뿌림, 겨울 뿌림, 중간 성질(두 계절)을 구별. 까락의 길이. 심는 때.

 

이상으로 보면 옛적부터 가장 중요시한 작물인 만큼 다른 이름도 많고 그 특성도 주의 깊게 관찰했는데, 그렇지 않은 것은 다른 이름도 적고 특성의 관찰도 충분치 않다는 것을 알 수 있다.

‘농사직설’ ‘산림경제’ 이외의 농서는 모두 사본으로서, 일반에서 입수하기가 어렵기에 여기에서 각 농서 가운데 중복된 것을 정리하여 다른 품종명과 그 해설을 열거했다.

농서에 따라서는 해설의 문구 등이 적거나 다르거나 오자가 있는데, 앞에 적은 다섯 종류의 농서의 해설을 비교·대조하여 할 수 있는 한 원본의 기술에 따랐다.

조선 고농서 안의 주요 농작물 품종

괄호 안에 기재 농서명을 들어서 출처를 확실히 해 놓았다.

(농직)…농사직설 (금잡)…금양잡록 (산경)…산림경제 (동농)…해동농서 (임경)…임원경제지

 

 

이후의 내용은 우리의 옛 농서에 그대로 나오는 내용을 정리한 것이기에 뺐습니다(- 역자).

 

 

앞에 적은 품종명의 대부분은 현재도 재래종의 이름으로 사용되고 있는데, 예를 들면 노인도老人稻, 정근도精根稻, 생동점속生動粘粟, 무건나속茂件羅粟, 조비형속鳥鼻衡粟, 흑태黑太, 황태黃太, 유월태六月太 등과 같은 이름은 벼, 조, 콩의 품종명으로서 보통 통용하고 있다. 그런데 그 품종의 특성이 과연 적혀 있는 해설과 일치하는지 아닌지를 조사하는 것은 매우 흥미로운 일로, 특히 재래종을 조사하여 품종명을 정리·통일하려는 지금 이러한 점도 명확히 밝힐 필요가 있다.

 

 

 

3. 현재의 작물 품종명

 

 

1) 조사한 수와 다른 이름 수

여기에서 현재의 품종명이란, 조선을 병합한 이후 현재에 이르는 기간에 불리는 재래 작물 품종명을 가리키고, 그 조사에서는 할 수 있는 한 여러 다른 이름을 망라하기 위해, 지금까지 본부 및 지방 농사시험장 등에서 발표한 벼, 조, 콩, 밀·보리의 재래종 조사에다, 필자가 1921년 이후 여러 번에 걸쳐서 조선 각지에서 수집한 작물 품종명을 더한 것으로, 조사한 모든 수는 실로 1,3770종에 이른다.

이러한 품종명의 대부분은 한자를 써서 표시되어 있는데, 그 안에는 지방의 사투리라 생각되는 한글 또는 가명 문자로 써서 뜻을 알 수 없어 한자로 바꿀 수 없는 것도 꽤 있었다. 이 조사는 한자 또는 한자로 번역할 수 있는 것만 행하고, 한글 또는 가명 문자라 한자로 번역할 수 없었던 것은 모조리 생략했다. 그렇게 하면 한자 품종명에서도 동의어가 꽤 많아 실제로는 동의어와 다른 이름을 구별하기가 매우 어려웠다. 예를 들면 달조達租와 월조月租, 화대두火大豆와 불대두佛大豆와 같이 한글로는 똑같이 발음하기에 보통 동의어로 볼 수 있다. 그런데 이와 같은 것에서도 한자를 주로 하며 그것을 다른 이름으로 간주하여 취급하는 적대두赤大豆와 홍대두紅大豆와 같은, 문자는 다른데 뜻은 똑같이 붉은 콩을 뜻하는 말들은 동의어라고 간주하도록 한다.

각 작물별로 조사한 수 및 다른 이름 수를 들면 다음과 같다.

 

작물별

조사한 수

다른 이름 수

논벼

5623

991

밭벼

501

167

3279

1085

2657

447

보리

1101

103

610

90

총계

13770

2883

 

곧 조사한 모든 개수 1,3770에 대한 다른 이름의 수는 2883이다.

앞의 표에서 논벼·밭벼, 조에는 각각 찰·메 종류가 있어 동일한 품종명을 양쪽에서 헤아린 것이 있다. 또 각 작물에 공통된 품종명이 각 작물별로 다른 이름으로 열거되어서 만약 찰·메별 또는 작물을 구별하지 않고 전반적으로 다른 이름만 든다면, 다른 이름의 수는 오히려 감소한다. 더욱이 한글로 똑같이 발음하는 품종명을 동의어로 정리하면, 다른 이름의 수는 뚜렷하게 적어진다. 이와 같은 것은 이후의 연구로 넘기도록 한다.

그러하면 이상의 조사 결과에서 보면, 작물에 따라 뚜렷하게 다른 이름의 수에 여러 개가 있다는 것이 판명된다. 곧 벼, 조에서는 각 1000종 이상의 다른 이름이 있고, 콩에 다음가는 밀·보리는 겨우 100종을 헤아릴 수 있는 데 지나지 않는다.

거기에 옛적부터 중요시한 벼, 조, 콩 등에는 실제로는 여러 다른 품종이 존재하여 그 특성 등도 일반적으로 주의 깊게 관찰하는 것에 반하여, 밀·보리 등의 경우는 전자에 비하면 다른 품종의 수도 적고 농가에서는 그 품종의 특성에 대해 비교적 무관심하다고 상상할 수 있다.

 

2) 품종명의 구성 요소

앞에 서술한 여러 다른 이름의 각개에 대해서 보면, 언뜻 거의 멋대로 부르고 있는 듯하지만 이를 상세히 조사하면 일관된 몇 개의 요소가 성립되어 있는 것을 알 수 있다.

필자는 조선의 농작물 품종명의 구성 요소를 벼, 조, 보리에서는 12개로, 콩에서는 13개로 구별하고, 모든 다른 이름을 그들의 각 요소에 따라 분류하여 보았다. 지금 각 작물별로 품종명의 구성 요소와 그에 속한 다른 이름 및 다른 이름의 실례를 들면 다음과 같다.

품종명 구성 요소와 다른 이름 수 및 그 실례

 

(1) 벼(논벼)

구별

품종명 구성 요소

다른 이름 수

실례

1

식물체 부분의 색을 표시

80

흑, 백, 적, 황, 청, 은, 금, 갈, 자.

2

까락의 유무, 길이, 기타

29

털, 긴털, 긴목, 수염, 없음.

3

짚의 길이, 분얼, 기타

37

커다람, 길고 강함. 여러 줄기, 키 작음, 많은 가지, 이삭 하나, 세 이삭, 다섯 이삭, 짧은 목.

4

익음때의 늦고 빠름, 심는 때, 방법, 기타

46

올, 가온, 늦. 6월, 소서, 7월, 봄, 겨울, 백로, 사시, 모내기

5

수확량, 기타

26

많음, 밀다리密多利, 一千, 九萬, 다섯 되, 일곱 되, 네 섬, 여덟 섬

6

인명, 관직명

38

노인, 조동지趙同知, 장사, 장군, 정씨鄭氏, 중, 선달, 박, 강태공

7

지명

135

대구, 여산, 거창, 무주, 왜, 충청, 경상, 전라, 해남, 남해, 수원

8

식물명

58

보리, 조, 쌀, 콩, 녹두, 버들, 팥, 대추

9

조수, 물고기

76

소머리, 돼지(豚, 猪), 소꼬리, 꿩, 닭, 까치, 참새, 기러기, 용의 눈알

10

산천, 풍월, 하해, 옥석, 기타

56

돌, 산머리, 물위, 바람, 달, 이슬, 칠성, 모래, 바다, 못, 옥, 얼음

11

이상에 속하지 않는 것

333

精根, 대궐, 戊戌, 野充, 呂實, 구황, 愛達, 德不知, 普德, 京, 남, 북, 서, 辨, 眞

12

이상이 2개 이상 연결된 것

244

多毛白, 毛租赤, 적색조생, 黑目早, 赤多多, 백다다, 은다다, 홍장군, 백장군, 老人白

1158

 

(2) 조

구별

품종명 구성 요소

다른 이름 수

실례

1

식물체 부분의 색

55

흑, 백, 적, 황, 청, 자, 은, 금, 朱

2

수염의 유무, 다소, 이삭 모양, 기타

43

털, 없음, 사각, 2척, 긴목, 짧은목

3

짚의 길이, 분얼, 기타

15

3잎, 아홉 줄기, 긴 짚, 두 이삭, 무성함

4

심는 때, 방법, 익음때, 기타

29

올, 가온, 늦, 50일, 6월, 7월, 봄, 여름, 뿌리, 100일, 화전, 그늘

5

수확량, 기타

16

1섬여, 50섬, 곳간 늘림, 흉년 모름, 만섬, 5만섬, 가마니 넘침

6

인명, 관직명

44

형제, 자매, 노인, 이선달, 정선달, 현감, 장수, 각시, 중

7

지명

91

당나라, 바다, 왜, 장단, 평양, 맹산, 함종, 용강, 함흥, 곽산, 박천

8

식물명

47

박달, 싸리, 몽둥이, 버들, 대나무, 과꽃, 부들, 기장, 들깨, 순무, 쌀

9

조수, 물고기

82

새, 닭, 꿩, 새부리, 저울, 고양이발, 쥐꼬리, 호랑이꼬리, 개꼬리, 소머리

10

산천, 풍월, 하해, 옥석, 기타

22

산천, 풍월, 옥, 돌, 모래, 물, 바위, 청풍

11

이상에 속하지 않는 것

379

荒, 생동, 茂件羅, 隣不知

12

이상이 2개 이상 연결된 것

262

赤稈黃, 白莖靑, 靑長, 芒赤, 赤莖早, 赤莖50섬, 白稈, 白莖豚

1085

 

(3) 콩

구별

품종명 구성 요소

다른 이름 수

실례

1

단순히 특색을 표시한 것

59

흑, 백, 황, 적, 청, 갈, 반점

2

알의 크기, 기타

7

왕, 큰알, 중간, 작은알

3

눈의 색, 크기, 기타

7

검은눈, 차색눈, 붉은눈, 흰눈, 큰눈

4

줄기, 잎, 꼬투리, 콩대의 길이, 기타

20

버들잎, 큰꼬투리, 검은 꼬투리, 붉은 알

5

심는 때, 방법, 익음때, 기타

30

올, 가온, 늦, 조밭, 가을, 장마철, 뿌리, 좁음, 元頭

6

수확량, 기타

12

많음, 빽빽함, 1000알

7

맛, 조리, 쓰는 데, 기타

19

나물, 밥, 찰, 大同, 말린 콩나물

8

인명, 관직명, 기타

6

이감관, 포수, 儒執, 朴

9

지명

66

왜, 洋, 평양, 장단, 평북, 울산, 익산

10

각종 식물 이름

15

피마자, 대추, 조, 밤, 기장, 棒子

11

조수, 물고기, 기타

62

소, 말, 豚, 猪, 호랑이, 쥐, 꿩, 오리알, 매의 눈

12

이상에 속하지 않는 것

36

五前, 流無, 안개, 孟, 삿갓고개

13

이상의 이름이 2개 이상 결합된 것

208

중립백태, 대목황태, 백목청태, 대추태, 차색피마자, 조생적, 白菜, 端川黃

447

 

(4) 보리

구별

품종명 구성 요소

다른 이름 수

실례

1

식물체 부분의 색

7

적, 청, 황, 백, 붉은 줄기, 흰 줄기

2

낟알의 특성

4

껍질, 쌀보리, 찰

3

까락 길이, 유무, 기타

12

털, 수염 없음

4

이삭 모양 또는 이삭의 길이 등

10

이각, 사각, 육각, 십각, 긴 이삭

5

심는 때, 방법, 익음때, 기타

10

봄, 가을, 장마, 올, 가온, 늦, 50일, 줄뿌림, 점뿌림

6

수확량, 기타

8

5畝 4섬(일본 종자?)

7

인명, 관직명, 기타

10

노인, 중, 갓, 양반, 아이, 李

8

지명

13

왜, 동아, 영남, 경남, 수안, 목포

9

식물명

6

대두, 참깨

10

조수, 물고기

6

개꼬리, 큰 거북, 돼지, 제비꼬리, 매미

11

이상에 속하지 않는 것

6

鄭乃, 洞, 藥

12

이상이 2개 이상 연결된 것

11

豚裸, 春裸, 童皮, 백사각, 흑육각, 육각조생, 중육각, 긴까락육각, 燕童, 사각춘, 육각춘

103

 

(5) 밀

구별

품종명 구성 요소

다른 이름 수

실례

1

식물체 부분의 색

9

적, 청, 백, 자, 흰 줄기

2

낟알의 특성

9

메, 찰, 껍질, 裸

3

까락 길이, 유무, 기타

8

긴까락, 긴수염, 털, 까락, 많은 까락

4

이삭 모양 또는 이삭의 길이 등

3

긴 이삭, 짧은 이삭, 어지러이 김

5

심는 때, 방법, 익음때, 기타

10

봄, 가을, 올, 가온, 늦, 7월

6

수확량, 기타

0

-

7

인명, 관직명

6

8

지명

12

왜, 胡, 고려, 간도

9

식물명

5

대추, 콩, 차

10

조수, 물고기

5

豚, 猪, 까치, 장어

11

이상에 속하지 않는 것

2

우산, 부채, 달, 화살대, 荒, 眞

12

이상이 2개 이상 연결된 것

21

有芒白, 早熟短穗, 赤僧

90

 

이상에 따라서 명확해졌듯이, 조선 재래 작물 품종명의 구성 요소는 각 작물 대부분 공통이고, 품종의 형태·성질이나, 심는 때·방법, 수확량의 많고 적음 등을 표현하는 이른바 실질적인 이름이나, 인명·지명·동물명 등에서 인용한 것이 매우 많다. 또는 이들의 이름이 2개나 3개가 연결되어 성립한 것도 있어, 고유명사라 부르기보다도 오히려 보통명사와 같다.

따라서 하나의 품종명이 각 작물 공통으로 쓰이고 있는 것이 꽤 많아, 예를 들면 식물체 부분의 색을 표시한 흑·백·적·청·황 등의 문자는 벼·조·콩·밀·보리의 품종명에 공통으로 사용된다. 또 익음때의 이르고 늦음·수확량의 많고 적음·기타 각 요소에 속한 품종명에서도 각 작물 공통으로 사용되고 있는 것이 매우 많아, 올·가온·늦·빽빽히 많음·많음·왜·洋·버들·꿩·돼지·호랑이·소 등과 같은 것이 그 적합한 예이다.

그 재래 작물 품종을 놀랍도록 여러 다른 이름으로 교묘히 부르는 데에 구애되지 않는 농가의 품종에 대한 개념은 유감스러우면서, 그것과 상반되지 않으며 매우 막연하다고 할 수 있다.

 

3) 품종명의 지방 분포

각 작물에 공통으로 쓰이는 품종명은 또 지방적으로 보아도 그 사용 범위가 넓어, 대개는 온 조선에 분포하고 있다.

지금 여러 종의 품종명에 대해 그 분포의 실례를 들면 다음 표와 같다.

그러나 표 안의 숫자는 조사한 수를 나타내는 것으로, 동일한 품종을 뜻하는 것은 아니다.

 

작물 품종명의 지방 분포

(1) 벼

경기

충북

충남

전북

전남

경북

경남

황해

평남

평북

강원

함북

함남

1

흰벼

6

10

13

1

4

8

2

7

0

8

4

9

1

73

2

검은벼

11

0

0

5

2

0

6

2

10

21

0

11

10

78

3

올벼

6

2

6

4

2

2

2

6

8

5

6

5

1

55

4

多多租

25

10

21

21

25

19

22

3

4

0

21

8

7

186

5

노인도

30

8

14

6

6

38

11

11

2

0

17

4

0

147

6

麥租

31

14

15

5

7

4

1

26

27

14

14

0

0

158

 

(2) 조

경기

충북

충남

전북

전남

경북

경남

황해

평남

평북

강원

함북

함남

1

붉은조

2

1

0

2

2

3

5

4

1

2

1

2

2

27

2

노란조

1

0

2

1

5

7

9

3

0

1

3

2

3

37

3

올조

3

2

1

1

1

6

4

8

1

5

3

7

0

42

4

고양이발 조

7

2

8

5

5

8

2

3

2

3

7

5

2

59

 

(3) 콩

경기

충북

충남

전북

전남

경북

경남

황해

평남

평북

강원

함북

함남

1

흰콩

33

14

22

14

40

54

20

10

9

17

14

7

1

255

2

청콩

36

16

17

3

15

50

15

12

17

34

22

4

9

260

3

검은콩

36

7

29

17

29

29

21

10

19

16

20

4

6

243

4

왕콩

11

4

7

4

7

3

2

31

3

6

2

1

0

216

5

아주까리콩

13

3

5

0

2

5

2

7

2

0

4

0

0

43

6

쥐눈이콩

8

3

9

4

7

18

7

19

7

8

11

1

1

103

 

(4) 보리

경기

충북

충남

전북

전남

경북

경남

황해

평남

평북

강원

함북

함남

1

껍질보리

11

9

14

5

19

25

16

18

6

4

6

2

0

135

2

쌀보리

11

6

9

2

2

15

8

7

0

2

8

1

1

73

3

봄보리

8

5

5

5

5

13

7

18

10

1

10

5

0

92

4

童麥

6

12

5

18

17

26

3

0

0

0

5

0

0

91

 

(5) 밀

경기

충북

충남

전북

전남

경북

경남

황해

평남

평북

강원

함북

함남

1

중 밀

14

6

7

6

6

6

3

12

4

0

17

4

0

85

2

올밀

5

8

3

1

0

9

12

1

2

1

4

0

0

46

 

앞 표에 같은 품종명으로 모아 놓은 품종이 모조리 같은 품종인지 또는 여러 종류의 다른 품종인지는 정밀한 실지 관찰의 결과에 의하지 않으면 확언할 수는 없다. 하지만 가령 흰벼라는 1종의 벼 품종이 함경북도의 북단부터 전라남도의 남단에 이르기까지 재배할 수 있다고는 생각할 수 없다. 조·콩·밀·보리의 품종에 대해서도 각각 적응력에 차이는 있어도 한 품종을 가지고 온 조선에서 재배한다는 것은 기후와 풍토의 차이에 따라 도저히 불가능하다. 그래서 함경북도의 흰벼와 전라남도의 흰벼는 같은 품종이라 간주할 수 없는 것이 확실하다.

곧 조·콩·밀·보리 안에도 다른 종이나 같은 이름인 것이 매우 많다는 것을 알 수 있다. 거기에 반하여 다른 이름으로 부르고 있어도 사실 같은 품종인 것, 곧 다른 이름이나 같은 종도 매우 많다는 것은 쉽게 생각할 수 있다.

이와 같은 품종명으로는 매우 불편하고, 하나의 품종명은 하나의 품종에만 붙이는 쪽으로 정리·통일해야 한다는 점은 두말할 나위가 없다.

 

 

 

4. 작물 품종명으로서 적당한 것과 그렇지 않은 것

 

조선 재래종에는 다른 이름 같은 종이거나 같은 이름 다른 종 등이 매우 많고, 각 작물 사이에 공통으로 쓰이거나 또는 동일한 이름이 각 지방의 다른 품종의 품종명으로 쓰이고 있는 현상이 있기에, 이들의 품종명은 시비를 가려 정리·통일해야 한다.

그러나 품종명의 정리·통일은 이미 서술했듯이 품종의 특성 조사의 결과와 맞추어 완료할 수 있는 것이기에, 여기에서는 단순히 품종의 특성 조사가 완료될 경우에 채택할 수 있는 적당한 품종명과, 그 채택 방법 등에 대해 한마디 하고자 한다.

작물의 품종명에 한하지 않고 대개 작물의 이름은 하나의 작물을 다른 것과 구별하고자 편의에 따라 부르는 것이기에, 판연히 구별되는 이름이 첫째 조건이 아닐 수 없다. 예를 들면 단순히 군선이라 불러도 군선에는 전투함도 있다면 순양함, 잠수함도 있기에 어떤 배의 종류를 가리키는 것인지 판연하지 않다. 더욱이 전투함이라 불러도 그 안에는 여러 다른 것이 있기에 어느 전투함을 가리키는 것인지 명료하지 않다. 그래서 ‘陸奧’라든지 ‘長門’이라든지 부르는 고유명사를 써서 각각의 전투함을 구별한다.

작물의 품종명도 그것과 같아, 하나의 작물 안의 어느 한 품종과 다른 품종을 구별하기 위해서는서로 헷갈리지 않도록 고유명사를 써서 불러야 한다. 하나의 품종명에 두 개 이상의 품종이 포함되거나, 또는 두 개 이상의 품종명이 하나의 품종을 가리키면 완전히 품종명 본래의 임무에 반하는 것이다.

예를 들면 벼의 한 품종을 단순히 우량종, 재래종 또는 메벼, 찰벼라고 부르거나, 또는 보리의 품종명으로 단순히 껍질보리라든지 쌀보리라든지 부르는 것은 ‘육오’나 ‘장문’을 단순히 군선이라 부르는 것과 같은 것이기에, 이와 같은 보통명사는 품종의 명칭으로 가장 적당하지 않는 것이라 하지 않을 수 없다. 누런콩, 청콩 등의 명칭도 또한 품종 분류에서 보면, 하나의 이름에 여러 품종이 포함될 수 있기에 한 품종의 이름으로는 적당하다 할 수 없다. 그러한 이름이 옛날부터 일반적으로 통용되고 있는 경우에는 비교적 재배 범위가 넓은 어느 한 품종의 이름으로 한정할 수밖에 없다.

품종명은 또 일반 농업 관련 업자들이 쓰는 것을 목적으로 하기에, 가능하면 쉬운 단어로 읽기 쉬도록 하는 것이 좋다. 또 품종명에 따라서 그 품종의 특성을 연상할 수 있는 이름이 좋지만, 국화나 나팔꽃 같은 변화종의 이름처럼 실질적·분해적으로 한 점에 붙인 이름은 보통 작물의 품종명으로는 쓸데없이 길어서 일반적으로 적당하다고 할 수 없다. 재래 품종명에 여러 번 보이는 개똥조라든지 돼지똥조 등이라 부르는 것은 조의 형질을 연상시키기보다는 오히려 불쾌한 느낌을 불러일으켜서 품종명으로는 적당하지 않다. 필자는 일찍이 수원에서 논벼의 성육으로 만든 신품종, 고천수高千穗×석백石白을 ‘千石’으로, 다마금多摩錦×군익郡益을 ‘多益’으로, 조신력早神力×곡량도穀良稻를 ‘神穀’이라 명명했던 일이 있다. 그러나 품종명에 따라서 특별히 그 품종의 가치가 높아지는 것은 아니기에 너무 과장하는 것도 마땅하지 않다.

조선 작물의 품종명에는 앞에 기술했듯 각종 식물의 이름이나 조수·물고기의 이름을 활발히 인용하고 있다. 거기에는 麥稻, 米稻, 米麥이라 부르는 것조차 있다. 품종명이 되거나 작물명이 되거나 아주 명백히 어려운 것도 있다. 그러한 것은 품종명으로는 물론 적당하지 않지만, 대추콩, 밤콩 등처럼 오랫동안 일반적으로 통용하고 있던 것을 무리하게 말살하는 것은 좋지 않다. 그러한 것은 이른바 재래종 안의 어느 한 품종에 한정하여 쓰고, 다른 품종명으로 쓰지 않도록 하는 편이 좋다.

지금까지의 조사 결과에서 볼 때는 각 작물의 다른 품종 수는 다른 이름 수에 비하여 훨씬 적기 때문에, 다른 품종에 대한 다른 이름의 안배에 맞추어 꽤 자유로이 선택할 수 있다고 생각한다. 그 안배 방법은 여기에서 확정적으로 서술할 수는 없지만, 또는 나팔꽃 품종명을 붙이는 방법처럼, 어떠한 약속을 해 놓는다면 매우 편리하지 않을까 한다.

예를 들면 재래 품종명의 구성 요소의 하나하나를 품종 분류의 적당한 항목으로 안배하여, 콩을 본다면 황색 종피인 것에는 식물명, 녹색 종피인 것에는 지명을, 갈색 종피인 것에는 동물명을, 흑색 종피인 것에는 인명을 부여하거나, 또는 대립종에는 두 개의 구성요소를 연결한 이름을 쓰든지, 소립종에는 하나의 구성요소를 쓰자고 약속하 놓는다면, 그 이름에 따라서 품종의 특성을 어느 정도까지 알 수 있을 것이다. 복잡하지 않은 재래 품종의 이름도 그런 방법을 이용하여 편리하게 할 수 있다고 생각한다.

그리하여 품종 대장을 만들고, 그 뒤에 발견하거나 이입되거나 또는 육성된 신품종은 그 대장에 등록한다면, 거의 완전히 품종 및 품종명의 통일을 이루어, 기술자는 물론 관련 업자에게도 표준이 확실해질 것이다. 식물분류학에서 보듯이, 작물의 품종도 또한 그 완전한 초목과 종자의 표본을 적당한 곳에 보존해 놓는다면 품종을 동일하게 정하는 데에 매우 편리하며, 작물 품종 개량의 효과를 한층 높일 수 있다고 생각한다.

 

 

“5. 작물 품종 명명 규정”은 크게 의미가 없는 듯하여 생략합니다.

 

728x90

'곳간 > 문서자료' 카테고리의 다른 글

조선 토종 고추의 특성  (0) 2011.03.25
토종 벼의 특징  (0) 2011.03.24
[스크랩] 유기농업의 역사와 정의  (0) 2011.03.21
자연자본에 투자하는 농업  (0) 2011.03.06
지속가능한 농업이란 무엇인가?  (0) 2011.03.02

+ Recent posts