728x90

아메리카 대륙, 특히 미국에서는 옥수수가 작물의 왕처럼 여겨졌다. 

그래서일까? 유전자변형 작물로 가장 처음 상용화된 것이 아마 옥수수이지?

상대적으로 밀은 여왕으로 취급되는 점이 무척 재미있다. 





728x90

'농담 > 씨앗-작물' 카테고리의 다른 글

잎 표면 세포의 다양성  (0) 2019.01.25
<일본 재래 벼 품종군의 맛 평가>   (0) 2019.01.25
바나나 꽃  (0) 2019.01.23
식물 육종의 역사  (0) 2019.01.23
매운 토마토를 개발한다  (0) 2019.01.10
728x90

바나나 꽃.

한국에서는 바나나라는 작물이 재배되기 어려워, 늘 바나나의 열매만 보았지 꽃은 처음 찾아보았다.

물론 최근에는 해안성 기후인 지역의 시설하우스에서 점점 재배하는 사람이 늘어나는 것 같더라. 

 

아무튼 바나나의 꽃도 상당히 예쁘다는 걸 알았다.


특히 옥수수가 수염 하나하나에서 수정이 이루어져 옥수수알이 맺히듯이, 바나나는 꽃 안의 암술 하나하나에 수정이 이루어져 바나나 하나하나가 달린다는 걸 알았다. 너무 흥미롭다. 더 자세한 건 나중에 찾아봐야겠다.






728x90
728x90

인간이 식물을 이용해 온 것은 언제부터인가? 인간이 농경을 시작한 것이 이른바 "신석기 혁명"이라 부르는 무렵이라고 보면, 식물을 이용한 것은 그보다 더 오래되었을 것이다. 실제로 더 오래된 구석기 시대의 유적에서도 식물을 이용한 여러 유적과 유물들, 그리고 식물체들이 발굴되고 있다. 당시에는 수렵과 채집이라는 생업 양식을 통하여 야생의 식물을 먹을거리로 이용했을 것이다.


그러던 것이 농경이 시작되면서는 양상이 달라진다. 야생의 식물을 이른바 작물로 길들이는 과정을 거치게 되는 것이다. 이렇게 야생의 동물을 가축으로 길들이는 과정을 가축화, 야생의 식물을 작물로 길들이는 과정을 작물화라고 한다. 서아시아 쪽에서는 그 지역에서 발굴되는 작물과 관련된 여러 유물을 통해 대략 1만 년 전을 전후하여 밀이 작물로 길들여졌다는 것이 정설이다. 다른 무엇보다 밀이 갖는 상징성과 중요성 때문에 그렇지 여타의 식물들도 작물로 길들여지기 시작했을 것이다. 




https://seedinginnovation.org/milestones-in-plant-breeding/




아무튼 그 이후 농민들은 여러 가지 식물을 작물로 길들이게 된다. 인간이 한 식물을 작물로 길들이고, 또 그 작물에서 새로운 품종을 만드는 일을 우리는 육종이라 부른다. 그러한 과정에서 활용하는 육종의 방법 가운데 가장 쉽게 접근할 수 있는 것이 "도입 육종"이라든지, "분리 육종"이라는 방법이었을 것이다. 도입 육종은 말 그대로 한 작물이나 그 품종들을 외부의 다른 곳에서 가지고 들어와 재배하는 것을 이야기한다. 토종 씨앗을 수집하러 할머니들을 만나보면 한번쯤 듣는 이야기가 있다. 


"이거? 이거는 내가 시집올 때 가지고 온 거야. 친정 엄마가 이게 좋다고 해서 가져 왔지."


이런 이야기 아니면, 


"그거 내가 이웃 마을에 갔더니 그게 좋다고 해서 얻어다가 계속 심는 거지." 하는 식의 이야기 말이다.


이렇게 어떤 작물의 씨앗을 외부에서 새로 가져와 재배하는 방식을 분류하자면, 도입 육종이라 한다. 


그런가 하면 분리 육종은 이런 것이다. 어떤 작물을 어느 논밭에서 재배하고 있었다. 그런데 아주 우연히 자연적으로 돌연변이가 발생하든지, 아니면 자연 교잡을 통해서 요상하게 생기거나 맛이 다르거나 색이 다른, 아무튼 기존에 재배하던 작물과는 다른 특성을 보이는 개체가 생긴다. 그럼 눈 밝고 부지런한 농민 같은 경우, 그걸 그냥허투루 넘기지 않는다. 그놈의 씨앗을 따로 받아서 잘 챙겨 놓았다고 이듬해에 다시 심는다. 그러면 거기에서 내가 원하던 특성을 지닌 놈도 나오고 아닌 놈도 나오고 제각각이다. 그럼 그중에서 또 내가 원하는 특성을 지닌 걸따로 골라내 씨앗을 받아 이듬해에 또 농사를 짓고, 다시 그 과정을 해마다 반복하다 보면 드디어 다른 특성이 아닌 내가 바라는 특성만 나타나는 품종이 생기게 된다. 이게 바로 분리 육종의 과정이다. 


과거의 농민들은 대략 이 두 가지 방식을 이용해서 새로운 품종, 이른바 신품종이라거나 개량종이라 부르는 걸 만들어 왔다. 농민이 곧 육종가인 시대였던 것이다. 


그러던 방식이 20세기에 들어오면서부터는 크게 변화하게 된다. 20세기에 일어난 변화의 뿌리는 1800년대의 인물인 멘델에게까지 거슬러 올라간다. 그렇다, 중학교 생물시간부터 배웠던 그 수도사 그레고어 멘델이다. 완두를 가지고 흰꽃 붉은꽃 골라가며 무언가 해서 시험 문제에 등장하던 그 멘델이다. 작물 육종의 역사에서는 그를 빼놓을 수 없다. 


멘델의 유전법칙으로 부르는 그의 발견이 처음에는 별로 주목을 받지 못했다고 한다. 그냥 어디 수도사가 심심풀이 땅콩처럼 행한 실험이겠거니 했을지도 모르겠다. 그러다가 1900년대에 들어와 다른 식물학자들이 비슷한 연구를 통해 비슷한 결과를 얻게 되었고, 그러면서 이전에도 이런 선행연구가 있었나 찾아보다가 멘델이 발표한 논문을 발견하게 되면 재평가를 받게 된다. 이러한 일련의 과정을 "멘델의 법칙의 재발견"이라고도 부르더라. 아래 도표를 보면 멘델의 유전법칙이 색이 다르게 표현되어 있는 걸 볼 수 있다. 그만큼 그의 발견 이전과 이후가 달라지며 그 중요성이 높아서 그렇다. 


https://www.euroseeds.eu/sites/default/files/esa_plant-breeding-evolution_ppt_final.jpeg



멘델의 실험 이후에도 아무 일이 없었던 건 아니다. 학문이란 게 다 그렇듯이, 모두 손을 놓고 있다가 어느 날 갑자기 멘델과 유사한 실험이 있었고, 그를 계기로 멘델의 법칙을 다시 발견하게 된 것은 아니란 말이다. 꾸준히 계속해서 여러 연구가 이어지고 있었다. 그중에 굵직굵직한 사건 몇 가지를 보면 1880년대에 있었던 라이밀 육종이 있다. 이는 밀과 호밀을 교잡한 신품종이다. 첫 교잡은 1875년에 있었고, 첫 타가수정은 1888년에 있었다고한다. 이게 중요한 건 예전에는 육종이란 것이 우연히, 자연적으로 일어나는 교잡과 돌연변이의 발생에 의존했다면, 이 무렵부터는 인간이 목적을 가지고, 의도적으로 발생시켰다는 점 때문이다. 인류는 이를 기점으로, 수많은 육종 시도를 통해 새로운 품종들이 폭발적으로 쏟아져 나오는 일을 경험하게 된다. 그러한 시도와 경험이 바탕이되어 1900년대 중반에는 이른바 "녹색혁명"이라 평가하는 사건을 일으키는 것이다. 어떤 사건 하나라도 어느 날 갑자기 마른 하늘에 날벼락 치듯이 일어나는 일은 없다.


다시 위의 도표를 보자. 1900년에는 교잡 육종이란 게 시작되었다. 말 그대로 "인간이 목적을 가지고 의도적으로" 어느 한 작물의 꽃에 있는 꽃가루를 다른 꽃에 수정시키는 것이다. 그를 통해 무엇이 탄생할지는 알 수 없다.유전자가 어떻게 조합이 되어 어떤 특성이 발현되느냐에 달린 문제니까 말이다. 그래도 예전처럼 자연적으로 그런 일이 일어나길 기다리거나 발견할 필요 없이, 내가 마음 먹으면 그걸 할 수 있게 되었다는 점에서 큰 차이가 있다. 


그리고 1920년이 되면 처음으로 "잡종강세"라는 현상을 이용한 육종이 시작된다. 이 무렵부터 우리가 흔히 알고 있는 신품종 또는 개량종의 대명사 F1 품종이 상품화되면서부터 종자 시장을 휩쓸게 되는 것이다. 잡종강세라는 건 어느 생물에게서나 다 일어나는 일로서, 흔히 부모보다 나은 자식이 태어나는 걸 가리킨다. 작물의 경우 A라는 작물 품종과 B라는 작물 품종을 교잡시키면 그 자손의 첫 세대, 즉 F1에서는 부모들이 지닌 유전적으로 우세한 특성이 발현되게 되어 있다. 이 현상을 이용해 A와 B라는 작물의 품종에 있는 인간이 바라는 특성만 F1에서 발현되도록 종자를 생산하는 것이다. 이제 씨앗을 나누어 준다든지 함께 쓴다든지 하는 방식의 시대에서 이른바 상품성이 좋은 작물이 수확되는 종자를 사고파는 시대로 넘어가게 된다.


이후에도 육종법은 계속해서 새로운 발견과 발전을 거듭하여, 돌연변이 육종법 같은 방식도 나타난다. 이건 자연적으로 일어나는 돌연변이를 기다리는 게 아니라 X선이나 방사선, 화학약품 등을 이용해 인위적으로 식물에게서 수많은 돌연변이가 발생하도록 한 뒤 그중에서 마음에 드는 놈을 하나의 품종으로 고정시키는 방법이다. 영화 X맨 같은 그런 일이라고 생각하면 이해하기 쉬울 것이다. 또 조직 배양 같은 방식도 있었지만, 영양체로 번식하는 식물 아닌 이상 별로 각광은 받지 못했다.


그보다는 꼭 짚고 넘어가야 할 일이, 바로 유전공학을 이용한 육종법이 개발되었다는 것이다. 멘델이나 그 이후의 학자들이 연구한 건 유전학(Genetics)이다. 아, 유전이란 이런 것이고, 유전자가 이런 역할을 하는구나 하는 내용을 이해하는 학문이 유전학이라면, 유전공학(Genetic Engineering)은 말 그대로 유전자를 인간의 목적에 따라 이렇게 저렇게 조작하고 가공한다는 뜻이다. 그러니까 식물의 유전자를 이렇게 저렇게 조작하고 변경하여 인간의 입맛에 맞는 작물을 만들어내는 데까지 온 것이다. 그렇게 개발한 작물이 처음으로 상용화된 것이 다들 잘 알다시피 1996년 미국에서부터이다. 지금은 그 영토가 엄청나게 확장되어 주로 신대륙이라 부르는 남북 아메리카를 중심으로 널리 분포하고 있다. 그런가 하면 구대륙이라 할 수 있는 유럽과 아시아 쪽에서는 그에 대한 반대와 반발로 그다지 널리 퍼지지 않고 있다. 이들이 분포역을 보면 또 여러 가지 문제를 생각할 수 있어 흥미롭지만, 여기서는 그냥 1990년대에 처음 상용화되어 농지가 광대한 신대륙 위주로 널리 분포하고 있다는 정도만 알고 넘어가도록 하자. 유전공학 기술을 통해 탄생한 유전자변형 작물(GMO)를 파괴의 씨앗이니 악마의 작물이니 부르는 사람도 있는데, 이들은 그러니까 일종의 프랑켄슈타인 같은 입장일 뿐이다. 모두 우리 인간, 그리고 우리가 모여 살고 있는 사회와 시대가 요구하여 탄생시킨 작품일 것이다. 우리의 사회와 시대적 요구, 그리고 인간이 이들을 어떻게 받아들이고 처리할 것인지 합의하고 조율하여 접근하는 일이 더 중요하지, 이런 걸 개발하여 재배하고 판매하는 것 자체가 옳은 일이냐 그른 일이냐 따지는 건 소모적일지도 모른다. 아무튼 쉽지 않은 문제로서 간단하게 정의를 내리기 어렵다. 


최근 들어서는 여기에서 한 걸음 더 나아간 육종법이 개발되었다. 중국의 허젠쿠이라는 과학자가 유전자 편집을 통해 아기를 만들어냈다는 소식은 다들 잘 알 것이다. 바로 그 방법을 식물에 활용하여 새로운 품종을 만드는 방법이 개발되고 있다. 유전자 편집 작물이 상용화되어 등장할 날도 그다지 멀지 않은 것 같다. 아무튼 이러한 유전공학의 방법은 육종을 하는 인간이 의도하는 바를 매우 정확하고 빠르게 식물에게서 구현시킬 수 있다는 점 때문에 주목을 받으며 활용되고 있다고 생각한다. 이는 분명 20세기에 들어와 산업사회가 무섭게 확장되면서 내건 기치 -생산성, 효율성, 균질성 등등- 가 인간의 경제와 문화는 물론 과학과 농업에도 구석구석 영향을 미친 결과이리라. 21세기는 어떻게 흘러갈까? 여전히 20세기의 가치가 유효하게 그 세력을 더욱더 확장할 것인가? 아니면 새로운 세기이고 이전 세기에서 여러 문제가 발생했던 만큼 사람들이 새로운 기치에 합의하고 그를 표방할 것인가? 육종의 역사를 통하여 우리는 이러한 일까지 생각해 볼 수 있지 않을까 한다.  


 


 







728x90
728x90
  • 1Centro de Ciencias Agropecuarias, Universidad Autonoma de Aguascalientes, Aguascalientes, Mexico
  • 2The Southwest Center, University of Arizona, Tucson, AZ, United States
  • 3Centro de Investigaciones Tropicales, Universidad Veracruzana, Xalapa, Mexico

We propose that comparisons of wild and domesticated Capsicum species can serve as a model system for elucidating how crop domestication influences biotic and abiotic interactions mediated by plant chemical defenses. Perhaps no set of secondary metabolites (SMs) used for plant defenses and human health have been better studied in the wild and in milpa agro-habitats than those found in Capsicum species. However, very few scientific studies on SM variation have been conducted in both the domesticated landraces of chile peppers and in their wild relatives in the Neotropics. In particular, capsaicinoids in Capsicum fruits and on their seeds differ in the specificity of their ecological effects from broad-spectrum toxins in other members of the Solanaceae. They do so in a manner that mediates specific ecological interactions with a variety of sympatric Neotropical vertebrates, invertebrates, nurse plants and microbes. Specifically, capsaicin is a secondary metabolite (SM) in the placental tissues of the chile fruit that mediates interactions with seed dispersers such as birds, and with seed predators, ranging from fungi to insects and rodents. As with other Solanaceae, a wide range of SMs in Capsicum spp. function to ecologically mediate the effects of a variety of biotic and abiotic stresses on wild chile peppers in certain tropical and subtropical habitats. However, species in the genus Capsicum are the only ones found within any solanaceous genus that utilize capsaicinoids as their primary means of chemical defense. We demonstrate how exploring in tandem the evolutionary ecology and the ethnobotany of human-chile interactions can generate and test novel hypotheses with regard to how the domestication process shifts plant chemical defense strategies in a variety of tropical crops. To do so, we draw upon recent advances regarding the chemical ecology of a number of wild Capsicum species found in the Neotropics. We articulate three hypotheses regarding the ways in which incipient domestication through “balancing selection” in wild Capsicum annuum populations may have led to the release of selective biotic and abiotic pressures. We then analyze which shifts under cultivation generated the emergence of Capsicum chemotypes, morphotypes and ecotypes not found in high frequencies in the wild. We hypothesize that this “competitive release” can lead to a diversification of the domesticate's investment in a greater diversity of SM potency across different cultural uses, cropping systems and ecogeographic regions. While most studies of plant domestication processes focus on morphological changes that confer greater utility or productivity in human-managed environments, we conclude that changes in the chemical ecology of a useful plant can be of paramount importance to their cultivators. The genus Capsicum can therefore provide an unprecedented opportunity to compare the roles of SMs in wild plants grown in natural Neotropical ecosystems with their domesticated relatives in the milpa agro-ecosystems of Mesoamerica. Even with the current depth of knowledge available for crop species in the genus Capsicum and Solanum, our understanding of how particular SMs affect the reproduction and survival of wild vs. domesticated solanaceous plants remains in its infancy.

Introduction

What changes occur in a Neotropical plant's chemical defenses when it is domesticated for crop production as a food, medicine, vermifuge or condiment, or for all four of these uses? There is remarkably little tested ecological theory regarding how domestication affects plant chemical defenses (Rindos, 1984Johns, 1990Casas et al., 2015). This may be because most phytogeographic, agroecological, and archaeobotanical studies of plant domestication have largely used morphological indicators to track the domestication process rather than identifying phytochemical indicators of changes in ecological interactions. As recently argued by Zeder (2017), ecologists need to identify tractable model systems that allows for an assessment of the core assumptions of the Extended Evolutionary Synthesis (EES).

The domestication of crop plants by human cultures provides one such case study opportunity. That is why we propose that the genus Capsicum can serve as important model system for discerning how changes in secondary metabolites (SMs) reveal shifts in plant chemical defenses that have occurred with domestication. In the case of domesticated chile peppers, these shifts influenced both (1) antagonistic interactions with predators and abiotic pressures, and (2) facilitated (including mutualistic) interactions among chiles, their avian dispersers, nurse plants and human cultures. The integration of ethnobotanical, paleoecological, archeological, linguistic, genetic and evolutionary perspectives on chile domestication that has been in process for the last two decades (Tewksbury and Nabhan, 2001Pickersgill, 2007Tewksbury et al., 2008bAguilar-Meléndez et al., 2009Haak et al., 2012Kraft et al., 2014Carrizo-García et al., 2016) has already contributed substantively to the possibilities of such an EES.

For these reasons, we have chosen to integrate ecological studies of wild Capsicum species in natural habitats of the Neotropics with ethnobotanical, agroecological and nutritional studies of domesticated Capsicum landraces in culturally-managed milpa habitats and indigenous diets of Mesoamerica. By doing so, we wish to further test hypotheses underpinning the theory that a major trend in crop evolution in the Neotropics has been a dramatic shift in the ecological functionality of plant chemical defenses (Johns, 1990). We propose that testing the following three hypotheses can help identify the most parsimonious fit with data and trends involving the evolutionary transition from wild Capsicum annuum var. grabriusculum to domesticated Capsicum annuum var. annuum:

(H1) a reduction and simplification of the potency of plant chemical defenses against seed predators, foliage herbivores and disease microbes with greater reliance on human intervention to protect the plants;

(H2) a diversification of the levels of potency and mixes of defense chemicals, given the wider range of habitats, cultural management and uses, and broader geography to which the crop chile plants are exposed;

(H3) an intensification of the potency of certain plant chemical defenses, given the need to protect the plants in agro-habitats where they occur at higher density and without as much beta diversity of neighboring plant species to slow the spread of predators, herbivores, competing weeds or diseases.

Crop plants in the Solanaceae (including Capsicum chile peppers) may be extremely useful models for looking at changes in potency, diversity or effectiveness of plant chemical defenses which occur with domestication. This is because their SMs and the ecological roles which these plant defenses play have been intensively investigated in the field and in the laboratory for well over two centuries (Johns, 1990Eich, 2008). Neverthless, it remains clear that we lack the detailed knowledge needed to determine how particular plant chemical defenses (e.g., specific capsaicinoids) function in repelling (or attracting) various sets of vertebrates, invertebrates and fungi which serve as seed predators, seed dispersers, fruit and foliage consumers or root parasites on various solanaceous crops. Even with the current depth of knowledge available for crop species in the genus Capsicum and Solanum, our understanding of how particular SMs affect the reproduction and survival of wild vs. domesticated solanaceous plants remains in its infancy.

Of the 97–102 genera represented by 2300–2460 distinct species documented in the Solanaceae (Hunziker, 2001Eich, 2008), SMs (such as the ornithine-derived alkaloids which function as the primary chemical defenses of most of these species) have so far been documented in more than 61 genera (Eich, 2008). Many of the SMs commonly found in the Solanaceae—such as tropane, nicotinoid, pyridine and terpenoid alkaloids—can be toxic or at least repellant to a broad variety of insects as well as to vertebrate herbivores; some also reduce fungal or bacterial infestations of seeds, fruit or foliage. We will focus the rest of this inquiry on the ecological and ethnobotanical consequences of these chemical defenses as found in seeds and fruits of solanaceous crops, with particular focus on chile peppers (Capsicum annuum).

These broad-spectrum alkaloids function as primary chemical defenses in a number of solanaceous crop plants, and in their wild relatives as well. We have therefore placed the domestication of Capsicum species in the context of other domestication studies for the following genera: Jaltomata (xaltomatl, sogorome); Lycium (goji berry); Nicotiana (tobacco); Solanum(potato, tomato, eggplant, garden huckleberry/chichiquelite); Physalis (tomatillo/ground cherry, cape gooseberry/uchuva) (e.g., Johns, 1990Pickersgill, 2007 among many others). While some of the same alkaloids characteristic of many species in the Solanaceace are present in extremely low concentrations in the foliage of Capsicum species, nearly all the species in this genus have taken up an altogether different strategy—Capsaicinoids, for defending their seeds and fruits from biotic stresses.

Departing from the norm in the Solanaceae—where species principally use broad-spectrum and highly toxic glyco-alkaloids for defense—most Capsicum species instead employ another, unique set of SMs that are not appreciably toxic to animals. In contrast to all other genera and species in the nightshade family, both wild and domesticated chile peppers produce several of the 22 known capsaicinoids, with capsaicin, dihydrocapsaicin and nordihydrocapsaicin being the most prevalent, widely-studied and economically important ones. However, it is likely that each distinct capsaicinoid functions in varying degrees to direct avian seed dispersal or to repel and reduce damage by insects, mammals, bacteria and fungi (esp. Fusarium) (Tewksbury and Nabhan, 2001Tewksbury et al., 2008bHaak et al., 2012). Unfortunately, to arrive at a comprehensive EES (Zeder, 2017), we will require more detailed knowledge on the specific ecological effects of 19 of those distinctive capsaicinoids on various faunal and fungal species found in Neotropical habitats.

The ability to produce capsaicinoids is a monophyletic synapomorphic carácter shared by most of the 35 + wild Capsicum species. The exceptions are few, and are found in the wild Andean clade (C. ciliatum = C. rhomboideum, C. scolnikianum, C. geminifolium, C. lanceolatum, and C. dimorphum), and the Longidentatum clade (C. longidentatum) (Eich, 2008Haak et al., 2012Carrizo-García et al., 2016).

Pungency in all other wild chile peppers has a simple genetic basis that is expressed only in glands within the placental fruit, where it serves to protect viable seeds from predation by granivorous mammals, or from microbial infestation. It also facilitates the directed dispersal of seeds by frugivorous birds such as thrashers, cardinals, and finches to safe sites for germination and recruitment under nurse plants, providing an unusually direct ecological link to changes in reproductive fitness that is often missing from studies of chemical ecology (Nabhan, 2004Tewksbury et al., 2008a). Pungency is polymorphic in several wild chile species (Carrizo-García et al., 2016), and such polymorphic populations have been identified along natural environmental gradients (Haak et al., 2012Carrizo-García et al., 2016). These polymorphisms provide unique opportunities to advance an extended evolutionary synthesis from field comparisons of wild and domesticated subspecies in the same crop species and economic genus (Hernández-Verdugo et al., 2001aHaak et al., 2012Chen et al., 2015).

These attributes make chile peppers excellent systems through which to investigate the evolution of adaptive constraints found under various levels of domestication.

Ironically, consumption of the very same capsaicinoids that function as chemical defenses for chile plants have long been used by Mesoamerican cultures as defenses against microbial and invertebrates challenging human health (Nabhan, 2004). Their many indigenous uses as food or medicine has likely benefited overall human health and reproductive fitness in Neotropical environments for well over six millennia (Perry and Flannery, 2007Kraft et al., 2014); these biomedically-significant ethnobotanical uses mediated by SMs (Mostafa-Kamal et al., 2015) possibly triggered the domestication and diversification of chile peppers.

Capsaicinoids are now the most widely used SMs in the world, even though their commercial production is dominated by landraces of just five species in the genus Capsicum. Now culturally-dispersed far beyond the Neotropics, each continent and its biomes favors different ecotypes of place-based landraces such as the tabasco pepper, ghost pepper, piri-piri, aji, habanero, jalapeño, and long green New Mexican chile. Today, more than a third of the world's human population daily consume food products derived from 2500+ landraces, standard varieties and modern hybrids of chile peppers (Tewksbury et al., 2008b). In fact, we predict that if one includes the number of human daily ingesting and topically-applying chile peppers as pharmaceuticals and folk medicinals then over half the world's population are currently consuming some form of chile peppers for nourishment, health and ultimately, reproductive fitness.

We will focus most of our analysis on discerning historic shifts in plant chemical defenses in the most widely-used Capsicum species – C. annuum L., domesticated in the dry subtropical habitats of Mesoamerica over 6,500 years ago (Kraft et al., 2014). We posit that these shifts in SM enhanced, or at least diversified, the mutualistic relationships among chile peppers and indigenous Mesoamerican cultures, as a result of relatively rapid selection and linguistically-traceable diffussion, that intensified around 6,500 years B.P. (Brown, 2010Kraft et al., 2014).

It appears that Homo sapiens is one of the few mammalian species which routinely overcome a deep-seated aversion to the consumption of pungent chile peppers (Rozin and Schiller, 1980Nabhan, 2004), perhaps because the evolutionary benefits of consuming chile fruits outweighed the costs when exposed to environmental challenges, commonly exhibited in certain Neotropical habitats.

Crop Domestication

Domestication is the outcome of both conscious and unconcious selection processes that lead to increased co-evolutionary adaptation of plants to cultivation and utilization by humans in managed environments (Gepts, 2010). Paleolithic cultures developed tools, food preparation and plant selection techniques for detoxifying certain plant foods rich in SMs (Johns and Kubo, 1988Johns, 1990). As such, the coevolutionary response of Mesoamerican cultures to chile peppers certainly included memes, but may also have included the selection of “non-taster” genes in humans for organoleptic tolerance of pungency and bitterness (Nabhan, 2004).

On the other hand, the suite of traits that marks the divergence from its wild ancestor(s) has been defined as the “domestication syndrome” (Harlan, 1992). A domestication syndrome may include selection for combinations of several different morphological and phytochemical traits, including seed retention (non-shattering), increased fruit and/or seed size, changes in branching and stature, changes in reproductive strategy, and, importantly, changes in SMs (Pickersgill, 2007Gepts, 2010Meyer et al., 2012).

Often, domestication selects against traits that formerly increased the plant's defensive or reproductive successes in natural environments (Meyer et al., 2012). However, this generalization may not completely fit for SMs such as capsaicinoids in C. annuum in the Neotropics, where a high diversity of landraces and wild populations express some degree of pungency as a natural defense against predators.

Cultural selection can therefore work in opposition to natural selection, and certain domesticated crops may exhibit reduced fitness, or, in some cases, an inability to survive outside of cultivation (Pickersgill, 2007Gepts, 2010). The very act of moving plants from natural habitats into culturally-managed habitats such as milpas alters the mix of selection pressures, leading to increased adaptation to cultivation, and to actual physical protection from pests and predators by cultural managers, potentially at the expense of traits conferring fitness in the natural environment (Meyer et al., 2012). In the very least, selection pressures for plant chemical defenses against predators might be relaxed if human intervention with the same predators (eg., rodents) is consistently offered to the crop variety over multiple generations.

Secondary Metabolites in Plants

Plant chemicals can be divided into two major categories: primary metabolites (PMs) and secondary metabolites (SMs). PMs are substances produced by all plant cells that are directly involved in growth, development, or reproduction (sugars, proteins, amino acids, and nucleic acids). PMs function in basic anabolic and catabolic processes required for respiration, nutrient assimilation, and growth/development (Kliebenstein, 2004Freeman and Beattie, 2008).

SMs may not be directly involved in growth or reproduction, but they are often involved with plant defense (Freeman and Beattie, 2008), particularly in the case of Capsicum species (Tewksbury et al., 2008b). SMs are considered the major mediators of ecological interactions of plants as a result of their large and diverse biological functions in nature. SMs are produced in response to certain biotic and/or abiotic stress signals or stimuli. They function in the defense against herbivores, microbes, viruses or competing plants, and also as signal compounds to attract pollinating or seed dispersing animals (Wink, 2003). Thus, SMs are very important for plant's survival and reproductive fitness. This complex multirole of SM has led plants to synthesize many different chemical compounds in nature during evolution (Kliebenstein, 2004).

According to their role in plant's defense, SMs have been classified on the basis of their host protection and fostering of beneficial biotic interactions. According to Freeman and Beattie (2008), SMs usually belong to one of three large chemical classes: terpenoids, phenolics, and alkaloids.

Terpenoids include a series of toxic and non-toxic phytochemicals produced in different plant organs that inhibit, repel, or attract other living organisms, such as predators (plant pathogens, herbivores invertebrates, vertebrates) and non-predators (dispersers, pollinators, pest-enemies).

Phenolics include a series of toxic and non-toxic compounds such as flavonoids, isoflavonoids, and phenolic monomers produced in different organs (roots, stems, leaves, flowers, fruits, and seeds). Phenolics and their derivatives have different functions in nature (UV-protectan, antifungal, antibiotic, insecticidal, and others).

Alkaloids are N-compounds produced and aggregated in different organs such as roots, leaves, fruits and seeds. Alkaloid-based SMs may function as bactericides, fungicides, insecticides and allelopathics. Alkaloids may have degrading and digestive effects on different tissues of predators and pathogens. Examples of this type of SM include cafeine, cocaine, morphine, nicotine, atrophine, plus capsaicine and other capsaicinoids. Other N-compounds important for plant chemical defense include cyanogenic glucosides, defensins, lectins, and hydrolitic enzymes.

Therefore, SMs in chile peppers and other solanaceous plants in Neotropical habitats have evolved as defense mechanisms against microorganisms (viruses, bacteria, fungi), herbivores (molluscs, hemipteran insects, vertebrates), and competing plants. They may also function to attraction of pollinators and seed dispersers by virtue of their fragrances and colors they express in the plants. Regardless of the efficacy of such benefits, SMs require a great deal of plant resources and energy to be produced. Consequently, they may be synthesized and translocated after a pathogen or pest has attacked the plant and triggered their activation. once activated, these chemical defensive compounds are usually very effective inhibitors of fungi, bacteria, nematodes, and hemipteran insect herbivores.

Chemical Ecology of Wild Capsicum in Neotropical Habitats

To address the changes in plant chemical defenses that have occurred with the domestication of Capsicum annuum, we must briefly establish the context through which wild chile peppers and other solanaceous plants deal with biotic and abiotic stresses prevalent in the Neotropics. In particular, we will focus on the biotic interactions as well as the biotic and abiotic stresses that wild chile plants may particularly respond to in dry subtropical thornscrub and tropical deciduous forest vegetation types, characteristic of the Sierra Madre Oriental and the Trans-Volcanic Belt in Mesoamerica. At least one EES-style integration has determined that these vegetation types are among the most likely Neotropical habitats where C. annuum domestication and diffusion may have occurred (Kraft et al., 2014). However, because there has been considerable change in the areas covered by these habitat types over the last 6500 years (Kraft et al., 2014), other proposed geographic areas such as the Yucatan peninsula remain viable enough as putative centers of chile pepper domestication that we do not wish to rule them out (Aguilar-Meléndez et al., 2009).

In contrast, the pungency of wild chile pepper fruit repels small mammals that function as seed predators, but directs their dispersal to safe sites under nurse trees where germination, recruitment and establishment have higher probabilities (Tewksbury and Nabhan, 2001Carlo and Tewksbury, 2014). The seeds from these pungent wild chiles are also protected from “predation” by Fusarium fungi that might otherwise leave the infected seeds inviable (as evidence shows for C. chacoense). Thus, the directed dispersal adaptations of wild chile peppers afforded to them by the pungency of their specialized SMs–their capsaicinoids—have conferred to them a level of reproductive fitness that has incidentally allowed them to be present in abundance and accessible to human foragers in the Neotropics for millennia.

Changes in Secondary Metabolite Intensity With Chile Domestication

What are the traits that have been modified as a result of selection under cultivation that have made modern and fully domesticated varieties of chile peppers so poorly adapted to the natural Neotropical habitats? We propose that the morphological and/or phenotypic changes which occurred during cultural selection and domestication of C. annuum have been accompanied by (if not surpassed in importance by) corresponding changes in SMs that regulate ecological interactions of chile peppers with their surrounding abiotic and biotic environments. The complexity and specificity of SMs as chemical mediators of biotic interactions of both wild and domesticated C. annuum in the Neotropics are summarized in Figure 1.

FIGURE 1
www.frontiersin.org

Figure 1. Ecological and cultural interactions shaping diversity of chile peppers (Capsicum annuum L.) across Mexico. (A) Graphic illustration of SMs as chemical mediators of ecological interactions with wild C. annuum in natural and semi-managed habitats. (Illustration designed by Frida Isabel Luna-Vallejo). (B) Map of Mexico showing indigenous territories, contrasted by colors. The symbols identify particular ecological zones where certain indigenous groups have persisted in modern times. All indigenous groups represented here have documented uses of chile peppers. (Map elaborated by Andres Lira Noriega and Araceli Aguilar-Melendez based on data from the authors, SINAREFI-SNICS-SAGARPA and SNIB/CONABIO 2016; the layer of indigenous territories was provided by Eckard Boege). (C) A representative sample of the wider array current morpho-typic diversity and levels of domestication of chile peppers across Mexico. (Photos by Ivan Montes de Oca Cacheux and Miguel Angel Sicilia Manzo/Image repository CONABIO).

Wild populations of chile pepper have coexisted and coevolved with many different organisms of tropical origin. Figure 1A focuses on two types of biotic interactions with wild Capsicum species: mutualistic and antagonistic. Every particular plant interaction is regulated by some SM produced and expressed in a particular organ, at a certain phenological stage, in response to specific biotic or abiotic signals. Chile pepper interactions have been strongly influenced by humans and cultural diversity in Mesoamerica over the last 10,000 years. The cultural diversity present in modern Mexico, and a sample of the wide morphological variation and levels of domestication that are currently found in Mexican chile peppers are shown in Figures 1B,C. The variation in Mexican chile peppers also applies to the chemical compounds, which may help explain the wide differences in fruit taste and flavor for different purposes and uses across Mexico.

Chen et al. (2015) indicated that among their various functions, SMs play particularly important roles in insect-plant interactions. Studies that have compared chemical defense traits in wild crop relatives and their cultivated counterparts are increasing in number, and their outcomes consistently show that domesticated plants provide a better food resource for herbivores than their more toxic wild progenitors. Several studies provide evidence of such changes in the chemical ecology and biotic interactions along a domestication gradient (Holt and Birch, 1984Benrey et al., 1998Rodriguez-Saona et al., 2011Dávila-Flores et al., 2013). These widely-observed trends seem to contextualize, if not explain, shifts in the chemical defenses of C. annuum during its domestication in certain but not all, Neotropical habitats of Mesoamerica.

To date, most studies of SMs in C. annuum in Mesoamerica have been focused on fruits of fully domesticated commercial varieties for consumption as fresh fruits (jalapeño, serrano, ancho and sweet pepper morphotypes). In addition, there are few ecological field studies of how capsaicinoids in wild Capsicum species of arid North America and tropical South America mediate relationships with native fauna, but they do not specify which capsaicinoid(s) drive those interactions (Tewksbury and Nabhan, 2001Tewksbury et al., 2008aCarlo and Tewksbury, 2014Haak et al., 2014). Most analyses have concentrated on capsaicinoids and few have included other SMs, such as phenolics and carotenoids. The literature available on SMs in chile peppers is focused on their presence in both, vegetative organs and in fruits and seeds (Do Rêgo et al., 2012Kim et al., 2014). The presence of SMs in different organs and genotypic backgrounds may help explain the existence of natural sources of genetic resistance in Capsicum to particular herbivorous pests and seed predators.

The identities of most SMs remains incomplete among wild C. annuum var. glabriusculum from the Neotropics. However, genetic resistance to Huasteco pepper virus has been documented for wild C. annuum from Nortwest Mexico (Hernández-Verdugo et al., 2001bRetes-Manjarrez, 2016). Of the known cases of genetic resistance among domesticated chile peppers are their tolerance to Phytophthora capsici and root knot nematodes, first documented in the Criollo de Morelos landrace—CM-334 (Pegard et al., 2005) also, leaf phenolic extracts from domesticated chile landraces have been used to control Alternaria altata in tomatoes.

Crop domestication can lead to a decrease in SMs associated with pest resistance, a trend corroborated by Meyer et al. (2012); they found a decline in levels of some SMs across 203 separate crop varieties, relative to levels in their wild progenitors, including C. annuum. However, other SMs, such as capsaicinoids, have dramatically increased within some natural and domesticated chile pepper landraces (e.g., Bhut Jolokia; Bosland and Baral, 2007), so that these changes are not unidirectional.

Given that “original” contexts for how wild Capsicum species function and survive in the Neotropics, Table S1 proposes a set of differences that may have been triggered by “balancing selection” during the domestication process. Balancing selection operated in ways that transformed some wild polymorphic populations into fully-domesticated but still heterogeneous C. annuum landraces. We place particular emphasis on levels of SMs and other adaptations that appear to confer reproductive fitness to Capsicum populations in Neotropical habitats.

Other Changes Occurring With Domestication of Chile Peppers

We do not wish to presume that shifts in SMs were the only changes which have occurred with the domestication of Capsicum species in Neotropical habitats. We wish to briefly mention several other traits of adaptive significance in Neotropical habitats.

Loss of Dispersal Mechanisms

Wild chile peppers are naturally dispersed by frugivorous birds to the understory of selected nurse plants (Tewksbury and Nabhan, 2001Carlo and Tewksbury, 2014), while domesticated chiles depend on human intervention for dispersal. Seed dispersal often involves lost of an abscission zone from some part of the plant. Fruits of wild chile peppers separate easily from the receptacle at maturity. Fruits of domesticated peppers remain firmly attached to the plant. Mature wild chile pepper fruits are consumed and effectively dispersed by a variety of frugivorous Neotropical birds. Domesticated peppers are either too large, or are not attractive to nor dispersed by most Neotropical birds. Different SMs may mediate seed dispersal in wild chiles, but carotenoids in the fruit pulp probably are likely the most important due to bird attraction by their red color. The pyrazine fragrances of chile peppers may also serve to attract certain birds.

Loss of Seed Dormancy

Most wild chile pepper seeds have staggered seed dormancy, which allows germination and recruitment when optimal conditions occur in a more variable and uncertain environment. Domesticated chiles do not exhibit any seed dormancy (Pickersgill, 2007). Therefore, domesticated chiles would likely have poor recruitment, survival and fitness if placed in most naturally wild environments. Seed dormancy in most wild Capsicum species is mediated by SMs such as ABA, a plant regulator that inhibits seed germination (Marrush et al., 1998Sariyildiz et al., 2005Nambara et al., 2010), and lignin, a structurally protective and hydrophobic compound of the seed coat (Randle and Honma, 1981Tewksbury et al., 2008bNambara et al., 2010).

Wild chile pepper seeds with thick lignified testas become increasingly impermeable to water on drying. This feature is disadvantageous for—if not absent from—most domesticated crop seeds, not only because these seeds germinate slowly, but also because they may require prolonged soaking to remove inhibitors from the seed coat (Randle and Honma, 1981Pickersgill, 2007Carlo and Tewksbury, 2014). Therefore, domesticated chile peppers generally have thinner testae than their wild progenitors.

Changes in Organ Size and Quantity

As part of the domestication syndrome, changes in secondary metabolite content may be correlated with other physical and chemical traits, such as nutrient content, size, or biomass (Chen et al., 2015). Compared to most domesticated landraces, wild Capsicum species exhibit smaller leaves, flowers, fruits and seeds, but a larger number of these organs per plant (Pickersgill, 2007). These characteristics—such small but numerous leaves and seeds—confer adaptability, stress reduction, survivability, and bet-hedging strategies to wild chile peppers for the production and dispersal of their seeds in Neotropical habitats (Tewksbury et al., 2008b).

Increased Morphological Variation

According to Chen et al. (2015), morphological changes arising from domestication can disrupt plant-herbivore-natural enemy interactions, however domesticated chile landraces now exhibit enormous inter-varietal and some intra-varietal heterogeneity in morphological traits.

This factor also is especially marked in the parts of the chile pepper plant used by Mesoamerican cultures. While domesticated chile peppers vary greatly in fruit size and shape, and to a lesser extent in color, wild C. annuum var. glabriusculum populations show little morphological variation in fruit size, shape, and color. In certain coastal Neotropical habitats, chile pepper fruits are selected for particular colors and shapes, said to be the best for seasoning turtle meat, while others, of different color and shape, are known as perfume peppers because they have a fragrant aroma as well as pungency. Pickersgill (2007) and Boster (1985) suggest that such traits result from cultural “selection for perceptual distinctiveness.”

In short, the different landraces of chile peppers grown and consumed across Mesoamerica display an astounding range of morphological variation in plant architecture and fruit shape, as well as in fruit color, pungency, and particular cultural uses (Bosland and Votava, 2000). All SMs in Capsicum species, including carotenoids, flavonoids, capsaicinoids, and ascorbic acid, are to some extent, linked with these morphological traits. Boster (1985) has deftly summarized the many references documenting the pronounced differences in morphology between wild and domesticated peppers.

Changes in Plant Habit Related to Resource Partitioning

Selection for increased harvest index (ratio of harvested to total biomass produced per plant) may result in reduced or suppressed lateral branching (Pickersgill, 2007). Reduced number of inflorescences per plant and producing more synchronous fruit ripening on an individual plant and within a stand, facilitating harvesting of the stand as a whole. Fewer nodes and shorter internodes, greater synchronization of maturation of vegetative branches and fruit ripening is also favored by a determinate habit.

The transition from the perennial indeterminate habit of wild chile peppers to the annualized compact habit of domesticated peppers has been triggered by selection for earliness, larger fruits, compact growth/reduced branching with reduced number of fruits per plant, and more synchronous fruit ripening. Loss of perennial plant habit may be the final/accumulated result of human selection for non-dormant seed, which probably modified fruit and seed morphologies, and SM potencies.

Changes in Reproduction

In Capsicum species, floral phenology and pollination, as well as fruit and seed development are influenced by different SMs. For example, carotenoid and flavonoid derivatives are secondary metabolites in the flower that attract pollinators. Similarly, fruit and seed dispersal are mediated by SMs which serve to attract seed dispersers. Simultaneously, fruit and seed protection is mediated by particular SMs (capsaicinoids and phenolics) that repel predators of fruits and seeds.

Wild C. annuum is an autogamous plant with protaginous flowers (exerted stigmas) and high rates of outcrossing by insect pollinators, and indeterminate growth in neotropical Mesoamerica. Flower initiation is late, but once initiated is persistent and very prolific, with overlapping stages of flower and fruit development over the season. Fully domesticated C. annuum land races can also be autogamous, but exhibit much lower rates of outcrossing, probably due to more synchrony in anther and stigma maturation. Most of the fully domesticated chile pepper land races exhibit determinate growth under cultivation, with more rapid onset of flower initiation, fruit development and ripening. For such reasons, fruit and seed production of fully domesticated chile landraces would be almost impossible under natural wild environments in the Neotropics.

Loss of Chemical or Physical Protection Against Biotic and Abiotic Stresses

Many other domesticated crops have partially or completely lost the SMs that protect their wild relatives against predators (herbivores, plant pests and pathogens), and abiotic stresses (drought, salinity, heat, frost, daming radiation, etc.). However, this trend does not necessarily hold true for most domesticated C. annuum land races. Capsaicinoids and other SMs are synthesized in the placental tissue of domesticated chile fruits after flowering as part of fruit development. In other words, in domesticated chiles, SMs may play a small role in chemical defense of plant tissues before fruit and seed development (Meyer et al., 2012Fernández-Marín et al., 2014).

Protection of wild chile pepper fruits in populations against predators is mostly conferred by capsaicinoids, although flavonoids and phenolics may also play protective roles against predators. However, protection against hervibory in wild chile plants (prior to their flowering) is also facilitated by the “prey refugia” offered by the dense thorny canopies of certain nurse plants. Where they lack nurse plant protection in Mesomerican milpas, domesticated chile peppers must rely on farmers themselves to evict (or to reduce the damage potentially wreaked by) mammalian predators and browsers (Pickersgill, 2007Gepts, 2010Padilha and Barbieri, 2016).

With regard to protection against abiotic stresses, wild chile pepper plants employ SMs such as flavonoids, phenolics and vitamin C for protection against drought, heat and daming radiation. In particular, carotenoid derivatives confer protection against plant cell oxidative reactions caused by lethal radiation, such as direct sunlight and UV light (Wahyuni et al., 2013).

Fully domesticated C. annuum landraces express widely varying concentrations of capsaicinoids compared to pungency levels in wild populations. Today, the mildest to most pungent domesticated chiles vary in the capsaicin and pungency content (~5,000–300,000 SHU); with most (but not all) wild populations being in the medium-to-high range (~100,000 SHU) of pungency (Eich, 2008). The hottest chile peppers belong to C. chinense and currently there are some cultivars of this species such as “Bhut Jolokia” and “Trinidad Scorpion” which have around 1.0 million SHU (Bosland and Baral, 2007), and “Carolina Reaper,” the hottest pepper in the world exceeding 1.5 million SHU (Padilha and Barbieri, 2016). Domesticated landraces of C. annuum may also have larger but more variable amounts of other SMs, including more antioxidant capacity (Wahyuni et al., 2011).

Agroecological Context of Milpa Cultivation as a Selective Pressure

Lack of both seed dormancy and a facultatively perennial plant habit probably enabled the shift from avian dispersal of fruits under nurse plant canopies in the wild to open cultivation of annual plants with non-dormant seeds in milpa agro-ecosystems. The loss of ecological interactions with birds and nurse plants due to intentional seed-saving and dispersal by humans must have generated incidental changes in SMs. Shifting the patterns of SMs through such selection could explain, in part, the emergence of new chemotypes, genotypes and morphotype landraces under cultivation in milpas within the Neotropics. The Mesoamerican milpa agroecosystem may have gradually replaced the nurse plants in agroforestry systems during the early domestication of C. annuum, but as it did, it likely accelerated unconscious selection away from wild chemotypes and morphotypes.

Synthesis of Coevolutionary Shifts Occurring With Domestication

We suggest that incipient cultivation and “re-balancing” selection of seed germinability in polymorphic founder populations of C. annuum var. glabrisculum in Mesoamerica around 6500 BP rapidly led to changes in gene frequencies associated with other adaptive traits. Curiously, this is roughly the time period when a new meme –a chile-processing technology and associated culinary techniques–first became evident in the prehistoric cultures of south-central Mexico. This technology was called mollicaxtli in Nahuatl (now molcajete today in Spanish, and consists of a round three-legged, grinding bowl and pestle for crushing dried spices, made out of fired clay or volcanic stone (Vela, 2009).

The molcajete's sudden emergence and wide diffusion suggests that domesticated chile pepper were not merely being eaten fresh, but surplus harvests were being dried and stored between growing seasons for use as a dried spice, condiment, medicine or vermifuge. Undoubtedly, these multiple uses of small, dried chile “pods” emerged long before the selection for larger fleshier fruits, which could be used as a vegetable that was stuffed with meats, fruits or other spices. Thus, a new technology (molcajetes) and its associated culinary uses, as well as seed saving and trade beyond their ancestral habitats may have accelerated selection for a wider range of Neotropical habitats and overall diversification of domesticated chile pepper landraces.

Most remarkably, chile pepper fruits of some cultivated landraces are many times hotter or milder than those of wild populations, suggesting that domestication has not only diversified, but shifted total pungency in both directions—to higher “heat levels” in some varieties (e.g., ghost peppers), and to lesser levels in nearly non-pungent varieties (e.g., bell peppers). There is limited evidence that the mixes of capsaicinoids found in cultivated chile varieties are also more variable than those in wild populations, but comparable sampling has been poor. Neverthless, we see evidence for both (H2)—a diversification of the levels of potency—and (H3)—an intensification of potency of selected SMs with chile pepper domestication.

In the case of milder (less pungent) chile peppers, we assume that farmers' protection of the plants compensates to some extent for lower levels of chemical defenses. Haak et al. (2012) have confirmed tradeoffs between expression of capsaicinoid pungency, and yield under water-stressed conditions. While capsaicinoids remain the most important plant chemical defenses in most domesticated chiles as they are in wild peppers, the roles of other secondary metabolites found in lower concentrations should not be dismissed.

Mesoamerican Human/Chile Pepper Coevolution in Relation to Benefits of Chemical Defenses

According to paleobiolinguistic reconstructions of the presumed origins and diffusion of domesticated chile peppers in Mesoamerica, the oldest reconstructed term for cultivated chiles is found in proto-Otomanguean from south-central Mexico, estimated to be in transcultural circulation by 6592 B.P. (Brown et al., 2013Kraft et al., 2014). This evidence is supported by archeological analyses that confirm the presence of domesticated chile fruit and spice-grinding molcajetes at sites along the Sierra Madre Oriental/Trans-Volcanic by 6000 years ago, especially in seasonally dry subtropical thornscrub (Kraft et al., 2014).

Nevertheless, several lines of research agree that the origin of the domesticated C. annuumlandraces may have also occurred elsewhere within the broader Mesoamerican region (Eshbaugh, 1970Hernández-Verdugo et al., 2001aPerry and Flannery, 2007Pickersgill, 2007Aguilar-Meléndez et al., 2009). In other words, the precise location or locations of domestication of C. annuum in Mesoamerica still remains unknown.

Based on linguistic analyses, Brown (2010) suggests that the earliest plant management in Mesoamerica was of grain, succulent and oil crops; they became cultivated as staples no later than 7000 years ago. The earliest cultivation of spices (including chiles) for seasoning these staples came centuries later.

In short, staples such as maize, maguey, nopal and avocado were probably cultivated to provide seasonal surpluses for storage and consumption at least a thousand years before the earliest detectable onset of chile pepper cultivation as a spice, anthelmentic medicine, vermifuge or condiment (but most likely not as a fresh green vegetable).

The pervasiveness of the use of chile peppers in treating illnesses in Mesoamerica and Aridoamerica (N Mexico and SW USA) is without peer, among any of the other crops domesticated in these regions. This fact alone suggests that the culinary uses of Capsicum were not the only catalysts to domestication. Table S2 shows several ancient medicinal uses derived from extensive studies of indigenous farming cultures in Mesoamerica. Collectively, this information suggests that a “Mesoamerican intellectual tradition” of indigenous medicinal-culinary knowledge (López Austin, 2001Good, 2005) may have guided the selection of SMs and other traits in chile pepper landraces. The very cultural persistence of chile plants (as well as maize, etc.) within milpas and dooryard gardens in this modern globalized world, is clear evidence that ancestral cultural traditions spanning 6000–7000 years, still have adaptive value today.

In addition, the milpa management traditions have been culturally maintained to keep alive what is culturally perceived as a sacred agroecosystem that maintains and regenerates everyday life, community values and collective identities among many Mesoamerican societies (Bonfil-Batalla, 2012Good, 2015). The medicinal, ceremonial and culinary uses of chile peppers by over 60 native cultures in Mesoamerica are embedded a small but inseparable and integral part of a broader cosmovision, one that persists up through this present moment (Alcorn, 1984Long-Solís, 1986López Austin, 2001de Avila, 2008). Any true EES that attempts to use chile pepper domestication as a model system must inevitably take these cultural memes into account.

There is no reason to assume that chiles were first gathered, then cultivated, for a single use, given that tobacco, cacao and other early crops also had multiple uses. However, as staple crops grew in yields and diets became more redundant, chile peppers may have played critically-important roles in protecting grains and legumes aggregated in storage facilities from post-harvest consumption by insect pests and fungi common in the Neotropics. Some of these same chemical defenses in chile peppers may have protected humans who were aggregated into increasingly dense habitations from intestinal parasites, and from body lice or fleas. Finally, the SMs in chile peppers may also have become increasingly necessary elements of the traditional diets and pharmacopeia as “nutraceuticals” that counteracted the greater redundancy in agricultural diets.

The pharmacological utility of SMs in chile peppers is not restricted to the control of fleas, lice and intestinal microbes. They have recently been demonstrated to be effective in reducing intestinal infections by aquatic helminthes of the same group as the intestinal worms that cause ill health and sluggishness among one third of the world's population, especially children in tropical climes (Mostafa-Kamal et al., 2015). This is a clear example of how plant chemical defenses have proven efficacy for “defending” human health against various biotic stresses among those who consume the same plant as a food, a medicine or both (Mostafa-Kamal et al., 2015).

In Table S2, we wish to underscore the myriad medicinal uses retrieved from historical documents that persist to this day in Mesoamerican intellectual traditions. Out of 47 ailments to which chile peppers were applied, 24 of these were recorded among Maya communities. In 2000, fieldwork in Yucatecan Mayan communities documented the persistence of medicinal uses of at least seven different types of chiles (Aguilar-Meléndez and Lira-Noriega, 2018), suggesting that the diversification of chile peppers may continue to generate direct benefits to human health.

Conclusions

In this paper three hypothesis were evaluated and discussed:

(H1) A reduction and simplification of the potency of plant chemical defenses against seed predators, foliage herbivores and disease microbes with greater reliance on human intervention to protect the plants. This assumes that fully domesticated modern and commercial varieties of peppers under intense monoculture are more susceptible to predators (insect pests and diseases), than their wild progenitors, because they produce less number and concentration of SM in fruits, seeds, and leaves.

(H2) A diversification of the levels of potency and mixes of defense chemicals, given the wider range of habitats and broader geography to which the crop plants are exposed. This assumes that different C. annuum landraces in different agroecosystems produce variable amounts and types of SM.

(H3) An intensification of the potency of certain plant chemical defenses, given the need to protect the plants in agro-habitats where they occur at higher density and without as much beta diversity of neighboring plant species to slow the spread of predators, herbivores, competing weeds or diseases. This assumes that some domesticated landraces and modern varieties produce larger concentrations of valued SMs (capsaicinoids and carotenoids) under intense monoculture, compared to their wild progenitors.

Of these three hypotheses, we see more evidence supporting both H2 and H3, with respect to the diversification and heightening of pungency through chile pepper domestication. H2– the diversification of levels in SMs under domestication– seems to fit with the mechanism of “balancing selection,” in the sense of maintaining polymorphisms in Mesoamerican chile pepper landraces. The H3 trend has mostly been in more recently advanced cultivars of chile peppers outside their area of Neotropical origins. The H1 trend toward a reduction in pungency and other SMs such as phenolics and carotenoids in fruits and other organs is most evident in the recently advanced “bell pepper” group of chile landraces and cultivars, which are also most popular outside of the Neotropics. There is no question that sweet bell pepper cultivars of C. annuummust rely on human protection to survive against different predators that may prey on roots, leaves, fruits, and seeds. While birds may damage bell peppers grown in temperate climates outside of the Neotropics, they are virtually ineffective in dispersing the fruit (or most seeds within the fruit) to safe sites for germination and recruitment.

We conclude that contrary to trends in other crops, domestication has not necessarily reduced potency or homogenized the levels of chemical defenses—or at least of capsaicinoids—in chile pepper fruits. It has diversified capsaicinoid potency levels among and across domesticated varieties, compared to those found in most wild chile peppers. However, scientists still lack sufficient evidence to conclude that such diversification has occurred in any other SMs involved in chile pepper plant defense.

The likely diversification of SM production and/or concentration in domesticated C. annuum is the result of differential human selection of different allelic combinations—including selection of many recessive genes, under different environments and managed ecosystems—that are only rarely expressed in truly wild populations (Haak et al., 2014).

Higher concentrations of pungent compounds such as capsaicin may confer better adaptation and fitness to chile pepper crops under novel environments. These highly pungent varieties are now finding new uses in pharmacological and culinary uses, but the majority of the world's human inhabitants continues to directly use wild or domesticated landraces of chile peppers medicinally and gastronomically as they have for centuries.

There is plausible evidence from diverse cultures in Mexico that the SMs expressed in C. annuumfruits have been efficacious in reducing human diseases as well as infestations of internal and external parasites. This may in part explain why so many of the distinctive medicinal uses of chiles persist in nearly every Mesoamerican and Aridoamerican culture today. The nutritional and medicinal benefits of chiles may initially appear diffuse or minor to evolutionary ecologists, but their collective benefits as perceived by their “co-evolved” Mesoamerican cultivators, curanderas, cooks and consumers are impressive.

The extraordinary potency and the current intensity of gastronomic and pharmacological uses of chile peppers (Bosland and Votava, 2000) suggest that chile peppers should no longer be relegated the status of a “minor crop” as standard economic botany references and global agricultural statistics have done in the past. By 2010, global production of domesticated Capsicum fruits had reached 1.8 million ha, with more than 29 million metric tons annually harvested (Wahyuni et al., 2013). Their production continues to expand, while their culinary as well as medicinal and pest-repellent uses continue to diversify.

We should acknowledge that the current efficacy and economic significance of chile peppers' secondary metabolities in our diets and pharmocopieas is not merely due to the historic inventiveness of and mutualistic interactions with our own kind. It has benefited from the selective pressures by fungi, hemipteran insects, nematodes and rodents, as well as the directed dispersal of chile seeds by numerous bird species in the Neotropics. As such, there remains much to be learned by further advancing analyses of chile domestication to serve as a model for extended evolutionary synthesis.

Author Contributions

JL-R: designed research and wrote the paper; GN: designed research and wrote the paper; AA-M: wrote the paper.

Funding

Funding for this publication comes in part from Programa de Fortalecimiento a la Calidad Educativa (PFCE) of the Universidad Autónoma de Aguascalientes, México.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The reviewer, DP, and handling Editor declared their shared affiliation.

Supplementary Material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fevo.2018.00048/full#supplementary-material

References

Aguilar-Meléndez, A., and Lira-Noriega, E. (2018). ”Dónde crecen los chiles en México?” in Los Chiles que le dan Sabor al Mundo. Contribuciones Multidisciplinarias, eds A. Aguilar-Meléndez, M. A. Vásquez Dávila, E. Katz, and M. R. Hernández Colorado (Xalapa: Universidad Veracruzana and IRD), 61–79.

Aguilar-Meléndez, A., Morrell, P. L., Roose, M. L., and Kim, S. C. (2009). Genetic diversity and structure in semiwild and domesticated chiles (Capsicum annuum; Solanaceae) from Mexico. Am. J. Bot. 96, 1190–1202. doi: 10.3732/ajb.0800155

PubMed Abstract | CrossRef Full Text | Google Scholar

Alcorn, J. B. (1984). Huastec Mayan Ethnobotany. Austin, TX: University of Texas Press.

Google Scholar

Benrey, B., Callejas, A., Rios, L., Oyama, K., and Denno, R. F. (1998). The effects of domestication of brassica and phaseolus on the interaction between phytophagous insects and parasitoids. Biol. Control 11, 130–140. doi: 10.1006/bcon.1997.0590

CrossRef Full Text | Google Scholar

Bonfil-Batalla, G. (2012). México Profundo. Mexico: Una civilización negada. De Bolsillo.

Bosland, P. W., and Baral, J. B. (2007). “Bhut Jolokia”—The world's hottest known chile pepper is a putative naturally occurring interspecific hybrid. HortScience 42, 222–224.

Google Scholar

Bosland, P. W., and Votava, E. J. (2000). Peppers: Vegetable and Spice Capsicums, Vol. 22. Wallingford, UK: CABI.

Boster, J. S. (1985). Selection for perceptual distinctiveness: evidence from aguaruna cultivars of Manihot esculenta. Econ. Bot. 39, 310–325. doi: 10.1007/BF02858802

CrossRef Full Text | Google Scholar

Brown, C. H. (2010). “Development of agriculture in prehistoric mesoamerica: the linguistic evidence,” in Pre-Columbian Foodways: Interdisciplinary Approaches to Food, Culture, and Markets in Ancient Mesoamerica, eds J. Staller and M. Carrasco (New York, NY: Springer), 71–107.

Google Scholar

Brown, C. H., Clement, C. R., Epps, P., Luedeling, E., and Wichmann, S. (2013). The paleobiolinguistics of domesticated chili pepper (Capsicum spp.). Ethnobiol. Lett. 4, 1–11. doi: 10.14237/ebl.4.2013.2

CrossRef Full Text

Carlo, T. A., and Tewksbury, J. J. (2014). Directness and tempo of avian seed dispersal increases emergence of wild chiltepins in desert grasslands. J. Ecol. 102, 248–255. doi: 10.1111/1365-2745.12180

CrossRef Full Text | Google Scholar

Carrizo-García, C., Barfuss, M. H. J., Sehr, E. M., Barboza, G. E., Samuel, R., Moscone, E. A., et al. (2016). Phylogenetic relationships, diversification and expansion of chili peppers (Capsicum, Solanaceae). Ann. Bot. 118, 35–51. doi: 10.1093/aob/mcw079

PubMed Abstract | CrossRef Full Text | Google Scholar

Casas, A., Parra, F., Rangel, S., Guillén, S., Blancas, J., and Figueredo, C. J. (2015). “Evolutionary ecology and ethnobiology,” in Evolutionary Ethnobiology, eds U. P. Albuquerque, P. Muniz de Madeiros, and A. Casas (Cham: Springer), 37–57.

Google Scholar

Chen, Y. H., Gols, R., and Benrey, B. (2015). Crop domestication and its impact on naturally selected trophic interactions. Annu. Rev. Entomol. 60, 35–58. doi: 10.1146/annurev-ento-010814-020601

PubMed Abstract | CrossRef Full Text | Google Scholar

Dávila-Flores, A. M., DeWitt, T. J., and Bernal, J. S. (2013). Facilitated by nature and agriculture: performance of a specialist herbivore improves with host-plant life history evolution, domestication, and breeding. Oecologia 173, 1425–1437. doi: 10.1007/s00442-013-2728-2

PubMed Abstract | CrossRef Full Text | Google Scholar

de Avila, B. A. (2008). “La diversidad lingüística y el conocimiento etnobiológico,” in Capital Natural de México. Vol. I: Conocimiento Actual de la Biodiversidad, ed J. Sarukhán (México, DF: CONABIO), 497–556.

Do Rêgo, E. R., Finger, F. L., and do Rêgo, M. M. (2012). “Consumption of pepper in Brazil and its implications on nutrition and health of humans and animals,” in Pepper: Nutrition, Consumption and Health, Vol. 1, eds M. A. Salazar and J. M. Ortega (New York, NY: Nova Science), 159–170.

Google Scholar

Eich, E. (2008). Solanaceae and Convolvulaceae: Secondary Metabolites: Biosynthesis, Chemotaxonomy, Biological and Economic Significance (A Handbook). Berlin, Heidelberg: Springer.

Google Scholar

Eshbaugh, W. H. (1970). A biosystematic and evolutionary study of Capsicum baccatum (Solanaceae). Brittonia 22, 31–43. doi: 10.2307/2805720

CrossRef Full Text | Google Scholar

Fernández-Marín, B., Milla, R., Martín-Robles, N., Arc, E., Kranner, I., Becerril, J. M., et al. (2014). Side-effects of domestication: cultivated legume seeds contain similar tocopherols and fatty acids but less carotenoids than their wild counterparts. BMC Plant Biol. 14:1599. doi: 10.1186/s12870-014-0385-1

CrossRef Full Text | Google Scholar

Freeman, B., and Beattie, G. (2008). An overview of plant defenses against pathogens and herbivores. Plant Health Instr. doi: 10.1094/PHI-I-2008-0226-01

CrossRef Full Text | Google Scholar

Gepts, P. (2010). Crop domestication as a long-term selection experiment. Plant Breed. Rev. 24, 1–44. doi: 10.1002/9780470650288.ch1

CrossRef Full Text | Google Scholar

Good, E. C. (2005). Ejes conceptuales entre los nahuas de Guerrero: expresión de un modelo fenomenológico mesoamericano. Estud. Cult. Náhuatl 36, 87–113.

Google Scholar

Good, E. C. (2015). “Las cosmovisiones, la historia y la tradición intelectual en Mesoamérica,” in Cosmovisión Mesoamericana. Reflexiones, polémicas y etnografías. Fideicomiso historia de las Americas. (México, DF: Serie Ensayos), 139–160.

Haak, D. C., Kostyun, J. L., and Moyle, L. C. (2014). “Merging ecology and genomics to dissect diversity in wild tomatoes and their relatives,” in Ecological Genomics: Ecology and the Evolution of Genes and Genomes, eds C. R. Landry and N. Aubin-Horth (Dordrecht: Springer), 273–298.

Google Scholar

Haak, D. C., McGinnis, L. A., Levey, D. J., and Tewksbury, J. J. (2012). Why are not all chilies hot? A trade-off limits pungency. Proc. R. Soc. B Biol. Sci. 279, 2012–2017. doi: 10.1098/rspb.2011.2091

CrossRef Full Text | Google Scholar

Harlan, J. R. (1992). Crops and Man. Madison, WI: American Society of Agronomy.

Google Scholar

Hernández-Verdugo, S., Guevara-González, R. G., Rivera-Bustamante, R. F., and Oyama, K. (2001b). Screening wild plants of Capsicum annuum for resistance to pepper huasteco virus (PHV): presence of viral DNA and differentiation among populations. Euphytica 122, 31–36. doi: 10.1023/A:1012624830340

CrossRef Full Text | Google Scholar

Hernández-Verdugo, S., Luna-Reyes, R., and Oyama, K. (2001a). Genetic structure and differentiation of wild and domesticated populations of Capsicum annuum (Solanaceae) from Mexico. Plant Syst. Evol. 226, 129–142. doi: 10.1007/s006060170061

CrossRef Full Text | Google Scholar

Holt, J., and Birch, N. (1984). Taxonomy, evolution and domestication of Vicia in relation to aphid resistance. Ann. Appl. Biol.105, 547–556. doi: 10.1111/j.1744-7348.1984.tb03081.x

CrossRef Full Text | Google Scholar

Hunziker, A. T. (2001). Genera Solanacearum: The Genera of Solanaceae Illustrated, Arranged According to a New System. Ruggell: A.R.G. Gantner.

Johns, T. (1990). With Bitter Herbs They Shall Eat it: Chemical Ecology and The origins of Human Diet and Medicine. Tucson: University of Arizona Press.

Johns, T., and Kubo, I. (1988). A survey of traditional methods employed for the detoxification of plant foods. J. Ethnobiol. 8, 81–129

Google Scholar

Kim, W.-R., Kim, E. O., Kang, K., Oidovsambuu, S., Jung, S. H., Kim, B. S., et al. (2014). Antioxidant activity of phenolics in leaves of three red pepper (Capsicum annuum) cultivars. J. Agric. Food Chem. 62, 850–859. doi: 10.1021/jf403006c

PubMed Abstract | CrossRef Full Text | Google Scholar

Kliebenstein, D. J. (2004). Secondary metabolites and plant/environment interactions: a view through Arabidopsis thalianatinged glasses. Plant Cell Environ. 27, 675–684. doi: 10.1111/j.1365-3040.2004.01180.x

CrossRef Full Text | Google Scholar

Kraft, K. H., Brown, C. H., Nabhan, G. P., Luedeling, E., Ruiz, J., de J. L., d'Eeckenbrugge, G. C., et al. (2014). Multiple lines of evidence for the origin of domesticated chili pepper, Capsicum annuum, in Mexico. Proc. Natl. Acad. SciU.S.A. 111, 6165–6170. doi: 10.1073/pnas.1308933111

CrossRef Full Text | Google Scholar

Long-Solís, J. (1986). Capsicum y Cultura: la Historia del Chilli. México: Fondo de Cultura Económica.

López Austin, A. (2001). “El núcleo duro, la cosmovisión y la tradición mesoamericana,”, in Cosmovisión, Ritual e Identidad de los Pueblos Indígenas de México, eds J. Broda and F. Báez-Jorge (México: CONACULTA y Fondo de Cultura Económica), 47–65.

Marrush, M., Yamaguchi, M., and Saltveit, M. E. (1998). Effect of potassium nutrition during bell pepper seed development on vivipary and endogenous levels of abscisic acid (ABA). J. Am. Soc. Horticult. Sci. 123, 925–930.

Google Scholar

Meyer, R. S., DuVal, A. E., and Jensen, H. R. (2012). Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol. 196, 29–48. doi: 10.1111/j.1469-8137.2012.04253.x

PubMed Abstract | CrossRef Full Text | Google Scholar

Mostafa-Kamal, A., Chowdhury, K. A. A., Moazzam, M., Chy, H., Shill, L. K., Chowdhury, S., et al. (2015). Evaluation of anthelmintic activity of seeds of Sesamum indicum L. and fruits of Capsicum frutescens L. J. Pharmacogn. Phytochem. 3, 256–259.

Google Scholar

Nabhan, G. P. (2004). Why Some Like it Hot: Food, Genes, and Cultural Diversity. Washington, DC: Island Press.

Google Scholar

Nambara, E., Okamoto, M., Tatematsu, K., Yano, R., Seo, M., and Kamiya, Y. (2010). Abscisic acid and the control of seed dormancy and germination. Seed Sci. Res. 20, 55–67. doi: 10.1017/S0960258510000012

CrossRef Full Text | Google Scholar

Padilha, H. K. M., and Barbieri, R. L. (2016). Plant Breeding of Chili Peppers (Capsicum, Solanaceae)-A Review. Embrapa Clima Temperado-Artigo em periódico indexado (ALICE). Availabele online at: https://www.alice.cnptia.embrapa.br/bitstream/doc/1060246/1/RosaLiaartigo2016plantbreedingofchilipepperareview.pdf

Pegard, A., Brizzard, G., Fazari, A., Soucaze, O., Abad, P., and Djian-Caporalino, C. (2005). Histological characterization of resistance to different root-knot nematode species related to phenolics accumulation in Capsicum annuum. Phytopathology95, 158–165. doi: 10.1094/PHYTO-95-0158

CrossRef Full Text

Perry, L., and Flannery, K. V. (2007). Precolumbian use of chili peppers in the Valley of Oaxaca, Mexico. Proc. Natl. Acad. Sci. U.S.A. 104, 11905–11909. doi: 10.1073/pnas.0704936104

PubMed Abstract | CrossRef Full Text | Google Scholar

Pickersgill, B. (2007). Domestication of plants in the Americas: insights from Mendelian and molecular genetics. Ann. Bot.100, 925–940. doi: 10.1093/aob/mcm193

PubMed Abstract | CrossRef Full Text | Google Scholar

Randle, W. M., and Honma, S. (1981). Dormancy in peppers [Capsicum annuum]. Sci. Hortic. 14, 19–25. doi: 10.1016/0304-4238(81)90074-1

CrossRef Full Text | Google Scholar

Retes-Manjarrez, J. E. (2016). Detección de resistencia al virus huasteco vena amarilla del chile y su heredabilidad en genotipos silvestres de Capsicum annuum L. Interciencia 41, 541–547.

Google Scholar

Rindos, D. (1984). The Origins of Agriculture: An Evolutionary Perspective. San Diego, CA: Academic Press.

Google Scholar

Rodriguez-Saona, C., Vorsa, N., Singh, A. P., Johnson-Cicalese, J., Szendrei, Z., Mescher, M. C., et al. (2011). Tracing the history of plant traits under domestication in cranberries: potential consequences on anti-herbivore defences. J. Exp. Bot.. 62, 2633–2644. doi: 10.1093/jxb/erq466

PubMed Abstract | CrossRef Full Text | Google Scholar

Rozin, P., and Schiller, D. (1980). The nature and acquisition of a preference for chili pepper by humans. Motiv. Emot. 4, 77–101. doi: 10.1007/BF00995932

CrossRef Full Text | Google Scholar

Sariyildiz, Z., Demir, I., and Halloran, N. (2005). Germination at stress temperatures and ABA content of pepper (Capsicum annuum L.) seeds in relation to seed development. Eur. J. Horticult. Sci. 70, 67–70.

Google Scholar

Tewksbury, J. J., Levey, D. J., Huizinga, M., Haak, D. C., and Traveset, A. (2008a). Costs and benefits of capsaicin-mediated control of gut retention in dispersers of wild chilies. Ecology 89, 107–117. doi: 10.1890/07-0445.1

PubMed Abstract | CrossRef Full Text | Google Scholar

Tewksbury, J. J., and Nabhan, G. P. (2001). Seed dispersal: directed deterrence by capsaicin in chillies. Nature 412, 403-404. doi: 10.1038/35086653

CrossRef Full Text | Google Scholar

Tewksbury, J. J., Reagan, K. M., Machnicki, N. J., Carlo, T. A., Haak, D. C., Pe-aloza, A. L. C., et al. (2008b). Evolutionary ecology of pungency in wild chilies. Proc. Natl. Acad. Sci. U.S.A. 105, 11808–11811. doi: 10.1073/pnas.0802691105

PubMed Abstract | CrossRef Full Text | Google Scholar

Vela, E. (2009). Los Chiles de México. Mexico, DF: Catalogo visual. Editorial Raíces.

Wahyuni, Y., Ballester, A. R., Sudarmonowati, E., Bino, R. J., and Bovy, A. G. (2011). Metabolite biodiversity in pepper (Capsicum) fruits of thirty-two diverse accessions: variation in health-related compounds and implications for breeding. Phytochemistry 72, 1358–1370. doi: 10.1016/j.phytochem.2011.03.016

PubMed Abstract | CrossRef Full Text | Google Scholar

Wahyuni, Y., Ballester, A.-R., Sudarmonowati, E., Bino, R. J., and Bovy, A. G. (2013). Secondary metabolites of Capsicum species and their importance in the human diet. J. Nat. Prod. 76, 783–793. doi: 10.1021/np300898z

PubMed Abstract | CrossRef Full Text | Google Scholar

Wink, M. (2003). Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64, 3–19. doi: 10.1016/S0031-9422(03)00300-5

PubMed Abstract | CrossRef Full Text | Google Scholar

Zeder, M. A. (2017). Domestication as a model system for the extended evolutionary synthesis., Interface Focus 7:20160133. doi: 10.1098/rsfs.2016.0133

CrossRef Full Text

Keywords: Capsicum annuum, plant domestication, secondary metabolites, plant chemical defenses, Neotropics, Mesoamerica

Citation: Luna-Ruiz JdJ, Nabhan GP and Aguilar-Meléndez A (2018) Shifts in Plant Chemical Defenses of Chile Pepper (Capsicum annuum L.) Due to Domestication in Mesoamerica. Front. Ecol. Evol. 6:48. doi: 10.3389/fevo.2018.00048

Received: 31 August 2017; Accepted: 05 April 2018;
Published: 24 April 2018.

Edited by:

Alejandro Casas, Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Mexico

Reviewed by:

Daniel Pinero, Universidad Nacional Autónoma de México, Mexico
Rosa Lia Barbieri, Embrapa Clima Temperado, Brazil

Copyright © 2018 Luna-Ruiz, Nabhan and Aguilar-Meléndez. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Jose de Jesus Luna-Ruiz, joselunaruiz11@yahoo.com.mx


728x90

'농담 > 씨앗-작물' 카테고리의 다른 글

옥수수의 육종  (0) 2018.05.24
심고, 기르고, 지키자  (0) 2018.05.15
미국의 토종 옥수수  (0) 2018.02.21
작물다양성의 중요성  (0) 2018.02.13
고구마의 이동  (0) 2018.02.09
728x90




유라시아 농경사 권1 


서장  계절풍 농경권의 사람들과 식물






들어가며



왜 지금 농경인가


인간은 왜, 농경이라 하는 '귀찮은' 일을 시작한 것일까? 그 전의 생업인 '수렵채집'과 어째서 결별하게 된 것일까? 이 질문에 대한답은, 사실 필요 없다. 여러 가지 가설은 있지만 모두 '넘고처지어' 결정적으로 무엇이라 말할 수 없다.

지금까지 이 물음은, 말하자면 연구자의 놀이 같은 것이라 어떠한 결론을 내려도 일반 사회에는 아무 관계가 없는 것이라 여겨졌다. 그러나 결코 그렇지 않다. 농경이라는 생업은 -여기에서는 목축을 포함하여 농경이란 용어를 쓴다- 일단 시작하고 나면 다시는 그만둘 수 없는 성격을 지니고 있다. 나는 구약성경에 나오는 금단의 사과에서 '금단'이란 의미가 거기에 있다고 생각한다. 더욱이 최근의 연구에 의하면, 농업을 시작하고 난 뒤 1만 년 사이에 인간 집단은 여러 번 실패를 겪으며 인구의 대부분이 사라지거나 사회가 큰 혼란에 빠져 생산활동이 마비되어 버리는 '붕괴' 현상을 되풀이해 왔다. 게다가 이러한 실패를 되풀이해 왔다. 예를 들면, 사막의 풍토(와츠지和辻 1935)에서는 메소포타미아 왕조(우르 제3왕조) 무렵부터 염해가 반복되었다고 한다. Maekawa(1974)에 의하면, 인간은 염해의 존재를 인식하고 있었지만 그에 필요한 대처수단을 강구하지 못했다. 그 뒤에도 염해를 입어 붕괴한 사회가 잇따랐다. 2000년 전쯤 루란 왕국도 염해로 붕괴되었을 가능성이 있다. 물론 루란 왕국의 사람들은 우르 제3왕조의 붕괴에 대해 몰랐을 것이기 때문에 어쩔 수 없는 일이라 할 수 있겠지만, 객관적으로는 잘못을 되풀이한 셈이다. 인류는 최근이 되어서야 겨우 역사라는 개념을 갖추어, 과거의 선배들이 저지른 이상한 실패를 알 수 있게 되었다.


농경의 역사를 아는 것은 단순히 교양의 문제에 그치는 것이 아니라 우리의 선배들이 과거에 무엇을 했고, 어떻게 했을 때 농업생산이 붕괴되었는지를 아는 길이다. 그렇게 하면 우리는 무엇을 해서는 안 될지, 혹시 가령 불행하게도 붕괴가 찾아왔을 때에는 어떻게 하면 혼란을 최소화할 수 있을지 등을 알 수 있다. 


그 뒤쪽 끝부분은 특히 중요하다. 인류는 제2차대전 이후 반 세기 이상 지역적인 재해와 사회적 혼란은 이외에 큰 붕괴를 경험하지 않았다. 반 세기 이상이란 시간은 현재 인류의 평균수명으로 보면 한 세대를 넘는 것이다. 즉, 세계 인구의 대부분은 큰 붕괴 현상을 경험하지 않았다는 것이다. 붕괴가 실제로 일어날 것이라고 생각하지 않고 있다. 그렇게 되면 붕괴라는 사실은 구전되든지 문서에 기록되든지 하는 것 말고 영원히 잊혀진다.




농경 -그 연구사  


농경과 목축에 관하여 포괄적인 연구를 행한 연구자가 세계에 몇 명 있다. Sauer(1952)와 나카오中尾(1996)은 세계의 농업 체계를 분류하는 작업을 행했다. Harlan(1975)도 유사한 연구를 행했는데, 나카오 등에게 없었던 점은 농업 이전 인류 집단의 생업에대하여 거론한 바이다. 20세기 말쯤부터 농업이 환경의 개변과 문명 발상에 근본적인 역할을 담당했다는 인식이 확산됨에 따라, 농업의 기원을 종합적인 시각으로 바라보는 시도가 몇 번이나 행해졌다. 콜린 텃지는 농경의 기원을 네안데르탈인과 크로마뇽인(현생 인류) 사이의 생태적 지위를 둘러싼 불화라고 파악한다(텃지 2002). 제레드 다이아몬드의 <총. 균. 쇠>와 <문명붕괴>, 피터 벨우드Peter Bellwood의 <농경 기원의 인류사>도 분야를 횡단하는 시각으로 쓰여진 훌륭한 저작이다.


재배식물과 가축의 기원, 전파에 관하여 연구한 연구자는 각론을 포함하면 여러 명이다. 오래된 것은 <재배식물의 기원>(de candolle 1953)을 시작으로, 그 뒤를 이은 같은 이름의 책(바빌로프의 <재배식물의 기원에 관한 연구(1928)>) 등이 고전으로 꼽힌다. 케임브리지 대학 출판부에서 출간된 The Cambridge World History of Food는 인용이 좀 오래된 것이지만 비주류 작물까지 다룬 좋은 책이다. 벼에서는 가토 시게카네加藤茂苞에 이어 岡彦一과 그 공동연구자가 행한 품종의 유전적 분화에 관한 일련의 연구가 있다(Oka 외, 1953). 또 중국에서는 周拾錄(1957), 丁頴(1961) 등이, 특히 중국의 벼 기원에 대하여 뛰어난 성과를 남겼다. 1980년대부터 일련의 분자생물학 성과도 벼의 기원 연구에 크게 공헌했다. 그 상세한 내용은 이 책의 石川隆二, 中村郁郞 등의 논문에서 다룬다. 밀에 대해서는 水原均과 그 공동연구자들의 이름을 거론할 수 있다. 보리는 세계에서 생산량이 4위인 작물로서, 高橋隆平과 그 공동연구자가 많은 연구를 남겼다. 먼저 이른바 '맥麥'에 대해서는 2009년 봄 맥류 연구의 전문가들이 직접 <맥의 자연사(麥の自然史)>라는 책을 홋카이도 대학 출판회에서 간행했다. 이외에도 서류에 대해서는 <서류와 인간(イモとヒト)>(吉田, 堀田, 印東 2003)과 Salaman(1949)의 The History and Social Influence of the Potato 등의 훌륭한 저작이 있다. 


세계를 석권한 가축 종의 수는 아마 주요 곡물 종의 수와 같을 정도로 소수일 것이다. 다이아몬드는 소, 양, 염소, 돼지, 말 5종을 '주요 5종'이라 부른다. 이외에도 분포 지역이 제한된 가축(다이아몬드는 남미의 알파카, 라마 2종과 낙타, 순록, 당나귀, 물소 등14종을 들고 있다)이 알려져 있다. 최근에는 이러한 내용에 대해서도 분자유전학의 수법을 이용한 연구가 활발히 이루어지고 있다.




유라시아에서 기원한 농경의 요소



농경은 녹말과 단백질을 얻기 위한 한 수단


인간의 생존에 필요한 영양소 가운데 기본적인 것은 에너지 공급원인 당분과 신체를 만드는 단백질이다. 당은 보존이 꽤 어렵기 때문에 안정적인 에너지원으로 당의 분자가 중합되어 생성된 '녹말'을 쓴다. 그 때문에 필요한 영양소는 녹말과 단백질이라 바꾸어도된다. 녹말원으로는 쌀, 밀 등 곡류나 타로, 바나나, 백합 등의 뿌리채소류, 밤, 도토리 등의 견과류가 알려져 있다. 단백질원으로는 가축과 그 야생종인 포유류, 어패류, 조류, 곤충 등이 이용되고 있다.


어느 토지의 녹말원과 단백질원을 결정하는 것은 그 토지의 기후와 풍토이다. 더 정확히 말하면, 기후와 풍토에 의하여 규정되어 온 생태계이다. 농경 이전의 사회에서는 그 토지에 살고 있던 동식물이 이용되었다. 농경이 시작된 이후에는 여기에 가축과 작물이추가되었다. 가축도, 작물도 그 풍토에 살던 야생의 동식물을 인간이 가축화(재배화)한 것에 지나지 않는다.


유라시아 각지의 녹말원과 단백질원이 어떻게 조합되는지에 대한 佐藤(2008a)의 작업을 그림 1에 실어 놓았다. 그림에 보이듯이, 녹말원과 단백질원의 조합은 토지마다 뚜렷하게 다르다. 



그림1


흥미로운 점은 그 조합의 지역성이 크게는 和辻(1935)가 주장한 풍토와 매우 합치한다는 것이다. 계절풍 풍토에서 성립된 녹말과단백질의 기본적인 조합은 '쌀+물고기"이다(佐藤 2008a). 인도는 여기에 특수하게 '잡곡+콩'이 조합된다. 다른 곳에서는 단백질원으로 쓰인 동물성 단백질이 종교적 이유 때문에 쓰이지 않고, 대신 고단백질의 콩류가 활용되고 있다. 한편, 사막의 풍토와 목장의 풍토에서 생긴 것은 '밀+고기·젖'의 조합이다. 목장의 풍토에서 북쪽에서는 녹말 공급원으로 16세기 이후 감자가 추가되었다.또 북유럽에서는 보리·감자+물고기라는 조합이 등장한다. 유라시아의 북쪽에서는 '잡곡+고기·물고기'라는 조합도 볼 수 있다. 일본 열도의 동북부도 역사적으로는 이러한 지역에 속했다. 역사적으로 보면, 녹말의 공급원은 크게 변천해 왔다. 그 일반적 경향으로는 (1)영양번식하는 것에서 종자번식하는 것으로, (2)목본을 시작으로 하는 여러해살이 식물에서 두해살이 초본으로라고 하는 두 가지를 들 수 있을 것이다. 녹말의 특성은 그 운반과 보존이 쉬운 성질이 장점이다. 이 두 가지에 뛰어난 것이 옮겨져 결국 세계에 퍼진 것이다. 이 두 특성이 식물의 진화 방향과 비슷해 보이지만, 반드시 그런 것은 아니다. 예를 들면, 덩이줄기를 이용하는 감자는 유럽을 중심으로 유라시아 전역에 퍼져 있다.


한편 단백질 공급원은 썩기 쉽고(보존성이 떨어짐), 또 운반도 어렵다. 그 때문에 최근까지 그 토지에 고유한 단백질 공급원이 있었다.




농업혁명과 산업혁명


영국의 고고학자였던 고든 차일드는 인류사를 고찰하여 구석기시대에서 신석기시대로 전환한 시점을 신석기혁명이라고 불렀다. 이는 산업혁명에 대비될만한 인류 역사의 대변혁이란 의미이다. 구석기시대와 신석기시대 사이에는 인간 활동에 확실히 크나큰 차이가 있다. 특히 토기의 등장은 먹을거리의 저장과 조리와도 관련되어, 인류의 식생활을 크게 바꾸었을 것이라 쉽게 상상할 수 있다. 그리고 먹을거리의 저장이 농업의 발달에 따랐을 것이라는 것도 쉽게 상상할 수 있다. 그러나 농업의 발달과 그에 따른 사회 체계의 변화, 토기의 등장과 보급, 식생활의 변화라고 하는 대변혁에 얼마만큼의 시간이 걸렸을지에 대해서는 의론의 여지가 있다.


일찍이 佐佐木은 인류가 농경을 받아들인 과정을 '프로세스'라고 불렀다(佐佐木 1993). 즉 佐佐木은 농경문화의 수용이 혁명과도같은 급격한 사회변화를 수반한 것이 아니라, 오히려 매우 천천히 진행된 과정이라고 생각했기 때문이다. 이것은 고고학적인 자료에서도 받아들일 수 있는 사고방식이다. 중국 장쑤성의 룡큐쩡龍虬莊 유적에서는 7000년 전에서 5200년 전까지 1800년에 걸쳐서 수렵채집 경제로부터 벼농사 경제로 이행한 경향을 살필 수 있다(龍虬莊 1999). 그와 같은 점은 밀의 진화에서도 일어나고 있다. Tanno와 Willcox(2006)는 서아시아 네 곳의 유적에서 출토된 밀(아마 사배성 밀로 여겨짐) 이삭의 가운데 축에 남아 있던 탈립의 자취를 상세하게 살펴, 주력이 야생형(탈립형)에서 재배형(비탈립형)으로 이행하는 데에 3000년 이상의 시간이 필요했다고 발표했다. 그러하다면, 농업을 수용하는 과정이 '프로세스'라는 佐佐木의 지적은 동아시아 벼에 고유한 현상이 아니라 서아시아의 밀에도 적용할 수 있는 원칙이 된다.


'프로세스'론은 농업을 수용하는 과정을 일직선으로 점점 올라가는 과정이라고 간주하는 것이 아니다. 왔다리 갔다리 하는 과정을 엉성한 그물코를 통하여 보았기 때문에 일직선의 과정으로 보였을 가능성이 있다. 현대의 학문에서는 그 어느 쪽이 사실에 가까운지를 말할 뿐 정확히는 아직 모른다.


또한, 룡큐쩡 유적의 자료와 그 해석에 대해서는 졸저 <벼의 역사(イネの歴史)>(佐藤 2008b)에 상세하게 기술했기에 거기에서 참조해주시면 감사하겠다. 



농경이 기원하기 이전 시기


대저 현생인류가 생겨 그 한 무리가 아프리카를 떠난 것이 10만 년 전에서 15만 년 전 무렵이다. 아프리카를 떠날 당시 인류에게 농경 문화는 없었다. 그 뒤 그들은 급속하게 온 세계로 퍼졌지만, 그들의 행선지마다 선주민들과 만나 여러 관계를 맺었을 것이다.그들의 일파가 서아시아, 곧 레반트 회랑 일대, 투르크 동남부의 티그리스와 유프라테스 강의 원류부 일대에 도달한 것은 몇 만년 전의 일이었다고 한다(篠田 2007). 텃지에 의하면, 이때 현생인류는 네안데르탈인과 만났을 가능성이 있다고 한다. 다만 그 시기는 추위와 더위가 자주 오락가락하고, 지금의 페르시아만도 육지였다고 한다. 현생인류는 그 뒤 사방으로 이동해, 동으로 이동한 한 일파는 5만 년 조금 전에는 오스트레일리아와 순다랜드라고 불리는 남중국해 일대에도 이르렀다.


텃지는 인류가 최초로 농경과 비슷한 행위를 행한 곳이 네안데르탈인과 만났던 페르시아만부터 서아시아가 아닐까 한다(텃지 2002). 도대체 인류는 왜 이동한 것일까? 그에 대한 설명은 여러 가지가 있지만, 여기에서는 그 가운데 하나인 그렇게 할 수밖에 없었다는 설을 채택하려고 한다. 보통 생태계 안에서는 거기에 사는 동물과 식물의 수가 엄밀한 균형 상태를 이루고 있다. 선주하던 인류도 또한 순수하게 생태계의 한 구성원으로 거주하고 있었다. 거기에서 지금은 '현생인류'라고 불리는 집단이 침입해 왔을 것이다. 그렇게 하여 생태계의 균형이 무너지고, 유사한 생태적 지위에 있던 선주민과 현생인류 사이에 긴장관계가 발생했다. 그러나 두 집단이 무기를 가지고 싸웠던 것은 아니다. 텃지는 현생인류의 승리는 그들이 더 농경과 목축에 가까운 생업 양식을 가지고 있었기때문이 아닐까 생각한다. 즉 현생인류는 토지의 한 귀퉁이를 점유하고 그곳을 갈아엎거나 간단한 울타리를 만들어 동물의 새끼를 기르지 않았을까 한다. 그렇게 하여 그들이 밀고 들어간 생태계는 현생인류의 '체취가 풍기는' 생태계가 되었다. 그곳은 어쩌면 야생동물에게도 선주민에게도 살기 어려운 환경이었을 것 같다. 신인류의 시치미 떼고 대수롭지 않게 하는 행위가 선주민에게는 견디기 어려운 고통스러운 일이 아니었을까?


비슷한 일이 현생인류가 가는 곳곳에서 일어났을 것이다. 그리고 만약 현생인류가 그와 같은 일, 즉 농경과 목축의 선구와 같은 생업을 확립할 수 있었다면, 그 성공담의 숫자만큼 '농경 기원'이 있어도 이상하지 않다. 어쨌든 현생인류는 순수한 수렵채집인이었다기보다 유용한 식물에 눈을 돌려 그것을 확보하거나, 또는 길들이기 쉬운 동물을 길들이거나 새끼를 사육하는 일을 통하여 차차 주변의 생태계를 만들어 바꾸어 나갔다고 생각한다. 야생동물과 선주인류의 집단은 점점 현생인류의 영역에서 점점 멀어져 가지 않았을까 한다. 



농경의 완성까지 지난 길


그러면 사람들은 어떻게 농경이란 작업을 완성했을까? 이에 대해 몇몇 연구자가 독자적인 견해를 전개하고 있다.


완성된 농경이란 먼저 (1)사람들에게 동식물을 관리한다는 명확한 의도와 지식이 있고, (2)그에 필요한 도구와 장치를 사회적으로 지니며, 또한 생활에 필요한 자재 가운데 적어도 일부를 그 행위에 의하여 획득하고, 더하여 (3)이러한 행위에 적응하는 전용 동물과 식물(곧 가축과 작물)을 지니고 있을 것 세 가지 조건이 필요하다. 이 가운데 아마 인류가 가장 먼저 손에 넣은 것은 첫 번째 조건, 즉 동식물을 관리하는 의도와 지식이었을 것이다. 농경의 첫 번째 단계는 사람에 의해 동식물이 관리되는 것이다. 다만 이 단계는 이전의 수렵, 채집과 고고학적으로 구별된다는 점을 덧붙이고 싶다. (2)의 도구와 장치로는 물고기를 잡기 위한 덫이나, 숲과 초원에 불을 놓아서 식물의 발아를 유인하거나 그에 의하여 동물을 꾀어내는 행위 등을 들 수 있을 것이다. 또는 새끼를 포획하여 사육하는 일 등도 이 단계에 들어갈지 모른다. 이러한 행위는 고고학적으로도 증명할 수 있다. 조몬繩文 시대의 일본과 신석기시대의 중국에서는 멧돼지 새끼의 뼈가 출현하는 빈도가 높은 경향을 확인할 수 있다(內山 2007, 龍虬莊 1999). 이 단계에서 두 번째 단계의 농경이 시작되었다는 것이다.


아마 최초의 두 단계까지는 생태계의 개변이 정주에 의하여 느리지만 착실히 진행되었을 것이라 생각한다. 


한편, 세 번째 단계에 들어가면 인류는 더 이상 예전으로 돌아갈 수 없게 되었다. 특히 가축과 작물이 무게 중심이 되면, 수렵·채집 경제로 회귀하는 일은 절망적일 정도로 어렵다. 그것은 가축과 작물은 사람의 손길이 없으면 살아갈 수 없고, 그 무렵에는 인류의 주변에 수렵·채집의 대상이 되는 식량자원이 바닥을 드러냈을 가능성이 있다.




풍토·기후와 농경


풍토와 기후


농경은 이전 시대인 '수렵과 채집'이란 생업을 이어받아 성립했다고 생각한다. 수렵과 채집은 완전히 자연에 의존하는 생업 형태이기에, 그곳에 어떠한 양식의 수렵·채집이 성립하는지는 자연식생과 마찬가지로 그 토지의 기후에 의하여 거의 일차적으로 정해진다. 기후학자 쾨펜Köppen은 이 관계를 기초로 하여 식생 등을 가미하면서 세계를 31개의 기후구분대로 나누는 발상을 발표했다(발견은 1920년 무렵). 이것은 지금도 쓰이는 개념으로, 교과서 등에 종종 등장한다. 또 키라吉良(1949)은 식생을 결정하는 큰 요인으로 온도(기온)을 들어 '따뜻함의 지수'(온량지수라고도 함)라는 개념을 발표했다. 뒤에는 여기에 추위의 지수도 추가해, 이들을 조합하여 온도의 월 변화라는 자료로 식생을 설명하는 방책으로 삼는다. 이와 같은 발상으로 '추위의 지수'도 고안된다. 따뜻함(추위)의 지표란 달마다 평균기온이 5도 이상(이하)이 되는 달에 대하여, 각각의 월 평균기온으로부터 5를 뺀 값(5에서 월 평균기온을 감한 값)의 합이라고 정의한다. 쾨펜의 기후 구분도 키라의 온량지수도 모두 식생을 온도와 강수량이라는 간단한 지표로설명하려는 시도이다. 그리고 각각 그에 성공을 거두었다.


한편 와츠지가 <풍토>의 집필을 시작한 것이 1928년 무렵으로, 이는 쾨펜보다 약간 늦다. <풍토>는 와츠지가 유럽 유학(1927~1928년) 때 견문한 각지의 모습을 기초로 썼는데, 이 유럽 유학 중에 쾨펜 또는 그의 학설과 접했을 가능성이 없지 않다. 그러나 <풍토>에는 구체적인 기후의 이야기가 전혀 나오지 않는다고 해도 좋을 만큼 거론되지 않는다.


그럼에도 불구하고 <풍토>가 규정하는 세 가지 풍토는 쾨펜을 시작으로 하는 기후지리학의 구분과 놀랄 만큼 일치한다. 그 정도까지 기후를 구분하는 경계가 명확하고, 또 그것이 자연식생만이 아니라 토지에 살고 있는 인간 집단의 농경과 문화를 규정하고 있다고 바꾸어 말할 수 있을 것이다. 어떻든 풍토는 -그것을 기후 구분이라는 의미로 쓰든지 인간적 고찰과 와츠지 자신이 고안한 '풍토'라는 의미로 쓰든지- 각각의 지역에 살고 있는 인간들의 농경이란 요소를 강하게 규정하고 있는 것이다.



기후와 농경


농경이 성립하고 나서도 기후가 농경의 요소를 규정한다는 골조에 큰 변화는 없었다. 예를 들면 벼는 냉대에서는 최근까지 재배되지 않았고, 또는 보리가 열대 평야에서 재배되는 일도 없다. 


작물의 번식, 즉 개화와 결실을 결정하는 큰 요인으로 온도와 함께 일장(낮의 길이)을 빼놓을 수 없다. 이것은 야생식물에게도 공통인데, 식물에게는 크게 단일식물과 장일식물의 차이가 있다. 앞의 것은 가을에 해가 짧아지는 것에 감응하여 꽃을 피우고, 뒤의 것은 봄에 해가 길어지는 것에 감응하여 꽃을 피운다. 낮의 길이는 그 토지의 위도에 따라서 엄밀하게 결정된다. 그 때문에 위도대를 횡단하는 방향(즉 남북 방향으로)으로 식물을 이동시키면 개화하는 시기가 변하여 큰 어려움이 따른다. 식물은 동서 방향으로는 비교적 쉽게 이동하지만 남북 방향으로는 쉬이 이동하지 못한다.


그런데 인간은 작물의 품종개량을 거듭하여 몇몇 작물에서는 위도대를 뛰어넘는 일이 가능해지는 큰 유전적 변화를 가져왔다. 예를 들면 벼가 기원한 곳은 북위 20도에서 30도 사이의 아열대 지역인데, 현재는 적도 바로 아래에서부터 북위 45도에 이르는 냉대에서도 재배할 수 있다. 이것은 '일장중위성日長中位性' 또는 '불감광성'이라 하는 단일성(또는 장일성)을 잃은 특수한 유형의 출현에 따르는 바가 크다. 나중에 기술할 '북쪽 회랑'에서는 가을에 심어서 추위를 겪고 나서 꽃을 피우는 것이 본래의 성질이었던 보리의 종류에 '춘파'라고 하여 여름철에 생육하는 특수한 품종군이 분화되어 있다.


인간에 의한 품종개량은 저지대부터 고산지대에까지 적응하도록 만들었다. 대부분의 곡물이 이에 해당하지만, 이와는 반대로 고산에서 살았던 작물이 산을 내려온 사례도 있다(예를 들면 감자). 원래는 반건조지대에서 기원한 보리인데 습윤에 강한 '동아시아형'이 분화된 것도, 또 원래는 수생식물이었던 벼가 밭벼라고 불리는 밭농사용 품종으로 분화된 것도 인간의 노력으로 품종개량이 된 바이다. 이러하면 어떠한 작물(또는 품종)이 어디에 적응하는지에 대해서는 인간 집단의 선호와 문화가 미치는 영향을 무시할 수 없다. 


동물에도 식물과 비슷하게 일장 반응을 나타내는 것이 많이 알려져 있다. 일장 시간이 길어지는 시기에 번식 시기가 겹치는 동물을장일동물(말 등)이라 하고, 또 그 반대의 동물을 단일동물(양, 염소 등이 해당됨)이라 부른다. 또한 그들도 위도대를 넘어가는 이동은 번식 시기를 변경시키게 되어, 그에는 큰 어려움이 뒤따를 것이다. 유라시아는 본래 동서로 긴 대륙이라서 동물과 식물도 주로 동서 방향으로 이동하고 남북으로는 이동하지 않았다. 그 이유는 일장, 나아가 위도를 넘어가는 일의 어려움 때문이다.



풍토의 개념


여기에서 이야기하는 풍토란 단순히 기후풍토라는 의미의 풍토(영어로는 climate)가 아니라, 그것을 기초로 하면서 기후의 요소에규정되는 각각의 생태적 요소와 나아가서는 그러한 자연의 요소에 의하여 강하게 규제를 받는 인간 사회의 구조와 문화, 그에 더하여 인간 집단의 자연관, 종교 등 사상도 포함하는 것이라 주장하고 싶다. 이 풍토관은 말할 것도 없이 와츠지 테츠로우和辻哲郎가 말하는 '풍토'를 의식한 것이지만, 그것을 완전히 답습하는 것은 아니다. 와츠지의 풍토는 그의 대표적인 저작인 <풍토>에 '인간적고찰'이란 부제가 붙어 있는 것에서도 알 수 있듯이, 어떤 풍토에 살고 있는 인간들의 기질까지도 근본적으로 설명하려는 조금은 거칠다고 말할 수 있는 사상이다. 그러나 와츠지의 이 사상은 그 이후의 연구자에게도 큰 영향을 미치고 있다. 예를 들면 사바타 토요노鯖田豊之의 <육식의 사상>, 스즈키 히데오鈴木秀夫의 <삼림의 사고·사막의 사고> 등이 그 전형적인 예이다. 그리고 이들은 일정한 성공을 거두었지만, 그러한 인과관계가 어떻게 성립하는지에 대해서 더욱 상세한 검토가 필요하다고 생각한다.


그럼에도 불구하고 내가 와츠지의 풍토론을 참조하려고 하는 것은 그 세 가지 풍토가 농경과 농경사의 지역성을 논할 경우에는 참으로 좋은 방법이라고 생각하기 때문이다. 그림에는 년 강수량 400mm의 선을 넣어 놓았다. 물론 와츠지 본인은 세 가지 풍토의 경계선 등은 넣지 않았다. 그러나 편의상 이 선을 세 가지 풍토의 경계선으로 놓겠다. 


다음의 '계절풍' '사막' '목장'이란 세 가지 풍토의 농경에 대하여 그 역사와 함께 더욱 상세하게 살펴보도록 하자.






계절풍 풍토와 농경



계절풍 농경의 중심은 벼농사 


와츠지의 풍토 가운데 가장 동쪽에 위치한 것이 계절풍 풍토이다. 이곳은 대략적으로는 일본 열도의 남반부부터 중국의 남반부, 인도차이나 반도의 대부분을 포함하며 인도의 동부에 이르는 지역이다. 이 지역은 벼, 그것도 자포니카 벼의 기원지가 있는 곳이자, 또 그 대부분이 벼농사 지대인 곳이다. 벼의 다른 종류 가운데 하나인 인디카의 기원지는 아직 불명확한데 아마도 열대 아시아에 있다고 한다면, 계절풍 풍토는 벼의 벼의 풍토이며, 또한 온대지역과 열대지역 가운데 산간의 화전지대가 자포니카의 풍토이고 열대 평지가 인디카의 풍토라고 정리할 수 있을지도 모른다. 또 열대 도서의 벼는 전통적으로는 자포니카의 지대인데 최근의 개량종에는 인디카에 속하는 것이 많다(盛永, 1959).


화전지에서는 벼 외에 최근에는 옥수수와 율무의 재배가 성행한다. 화전지에서 벼농사는 벼농사라고는 해도 여러 가지 작물을 섞어짓기해 왔다. 섞어짓기하는 것은 조 등의 잡곡, 메론과 호박 등의 박과 작물 외에, 바나나와 참깨 등의 유지작물, 허브 종류 등 다채롭다. 다만 화전은 겉으로 볼 때 생산성이 낮은 데 더하여, '숲 파괴'와 '환경에 나쁘다'는 등의 이유 없는 비판으로 급속히 그면적이 줄어들고 있다.


열대 저지대에서는 뜬벼라고 부르는 것을, 수심이 몇 미터나 되는 땅에서 농사짓고 있다. 뜬벼만큼은 아니어도, 우기에는 수심이 1미터 가까이 되는 곳이 많다. 이러한 곳에서는 현재 벼논양어가 행해지고 있다. 


미얀마 중부와 인도의 데칸 고원에는 약간 건조한 지역이 펼쳐져 있다. 이러한 지역에서는 잡곡이나 잡곡과 콩의 농사가 전개되고 있다. 



계절풍 풍토의 농경사


온대의 계절풍 풍토는 1만 년에 이르는 벼농사 지역이지만, 자세히 보면 농경의 양식에 큰 지역차가 있다. 일본 열도에서 벼농사를 수용한 것은 조몬시대 후기는 확실시되고 있지만, 열도의 동반부(이세만伊勢湾-와카사만若狹湾을 연결한 선의 동쪽)에서는 더디게 수용했다. 중기 이전의 일본 열도의 조몬문화는 초원의 농경과 수렵·채집을 조합한 형태였다고 생각한다. 나중에도 기술하겠지만, 농경의 요소는 중국으로부터가 아니라 북쪽에서 전해졌을 가능성을 부정할 수 없다.


그러나 일본 열도에서 논농사의 수용은 그렇게 간단한 문제가 아니었다. 한편으로는 잡초 방제의 문제를 들 수 있다. 온대 계절풍에 속하는 일본 열도에서는(특히 그 남서부에서는) 농경에 대한 가장 큰 위협이 잡초이다. 사람들은 잡초 방제에 관심을 쏟아 왔다. 그러나 결국에는 논에 납작 엎드려 뽑는 것 말고는 유효한 수단이 없었다. 땅에 여유가 있던 중세까지는 잡초의 대책으로 아마 지금은 휴경 또는 경작방기라고 하는 일을 행하였을 것이다(宇野 2001, 佐藤 2003). 또 고대 이후 사람들의 의식 속에서도 벼농사로 회귀하는 일은 순조롭게 이루어지지 않았다. 고대의 왕조는 종종 포고를 통해 육식의 금지령을 내렸지만, 그것은 종교적인 색채를 띠면서도 실은 벼농사의 비중을 높이려는 일종의 경제정책이었다고 한다(原田 2005). 그것은 걸핏하면 이동이 따르는 수렵과 채집 경제로 회귀하는 일을 막는 측면을 지니고 있지 않았을까 생각한다. 바꾸어 말하면, 사회구조를 벼농사로 전환하는 일에는그만큼의 시간과 에너지를 필요로 했을 것이다.


장강 유역은 세계에서 가장 오래 벼농사가 행해져 온 지역으로, 그 역사는 1만 년을 넘는다. 그러나 이 지역에서조차 벼가 사람들의 주요한 전분 공급원이 된 것은 양저문화기 이후의 일이 아니었을까 생각한다. 양저문화기 무렵에 장강 유역은 중국에서 북쪽의 문명이던 황하문명의 영향을 강하게 받았던 시기로서, 깊이 파고들어 이야기하자면 이 시기가 되어 처음으로 현재의 논벼농사의 원형이 등장하지 않았을까 생각할 수 있다. 현대의 논을 방불케 하는 장치가 최근에는 장강에서 북쪽으로 갈수록 많이 발견된다. 이는 논이라는 장치가 나중에 이야기할 황하문명의 강한 영향을 받아 발저한 것이 아닐까 하는 생각을 품게 한다.


그 이전의 '벼농사'는 아마 매우 조방한 양식을 띠고 있었다. 논벼농사의 시초에 대하여 후지와라藤原(1998)는 장쑤성의 초혜산草鞋山 유적(약 6400년 전)의 논 흔적을 발견했다고 발표하고 논벼농사의 기원을 이 시기에서 찾고 있는데, 여기에는 의론이 있다. 왜냐하면 '논'이란 장치를 오로지 벼농사를 위해 물을 담기 위한 논두렁과 관개를 위한 수로 등을 수반하는 구조물이라고 고려한다면, 그러한 장치는 일본 열도에서도 근세에 이르기까지 완성되지 않았다고 볼 수 있기 때문이다. 그 이전의 시대에는 그러한 논이 지극히 한정적이며, 벼를 심을 수 있는 논은 다른 수생동식물이 공존하는 다양한 환경을 이루고 있었다고 생각하는 편이 자연스러워 보인다.



중국이라는 풍토


계절풍의 농경을 생각하면 특필할 만한 것이 하나 있다. 그것은 '중국'이다. 와츠지 또한 중국을 '계절풍 풍토의 특수 형태'로 취급한다. 중국 농경의 기원과 전파를 고려할 때, 회하 또는 장강을 경계로 남북의 차이가 당연한 문제가 된다. 이 경계의 남북에서는 지금도 '북쪽의 맥류, 남쪽의 벼'라고 할 정도의 차이를 볼 수 있다. 남선북마南船北馬라는 말이 생긴 것에서도 알 수 있듯이, 중국에서 '남북'은 오랜 역사를 통하여 변함이 없었다고 인정을 받는다. 그리고 이 선의 남쪽은 벼농사 지대이며 계절풍 풍토에 속하고, 북쪽은 밭농사 지대인 데다 그 서쪽은 방목 등을 수반하는 건조, 반건조 지대를 지나 사막의 풍토로 이어진다.


이 밭농사 지대의 작물은 옛날에는 조, 수수 등의 여러 잡곡이었다. 이들은 황하문명의 옛 유적에서도 출토되며, 최근에는 요녕성과 내몽골 자치구의 신석기시대 유적에서도 출토되는 일이 보고되고 있다. 다만 조와 수수의 기원에 대해서는 명확한 정설이 없다.특히 수수는 여전히 불명이다. 또 피도 동북아시아에서 기원한 잡곡이라고 하는데, 그 기원에 대해서는 사카모토阪本의 '일본 열도기원설' 이외에는 뚜렷한 논고가 없다(佐々木 2007을 참조). 여기에서 열거한 잡곡류는 맥류와 같이 한해살이인데, 여름농사라는점에서 맥류와는 매우 다르다. 


아무튼 황하문명은 그 뒤 차례로 그 주곡을 잡곡에서 밀로 바꾸어 간다. 이 전환은 밀이 생산성에 더 뛰어났다는 사정이 있는지 불가사의한 현상이다. 왜냐하면 앞에 서술했듯이, 여기에서 재배되었던 잡곡은 모두 여름작물인데 이 지방에서 밀은 겨울작물이기 때문이다. 이러한 여름작물과 겨울작물의 전환은 인더스 문명기의 하라파Harappa 유적에서도 일어나고 있다고 한다(Weber 1991). 관개 체계 또는 물의 수입과 지출을 고려하면, 이 전환은 결코 쉽지는 않았을 것이다. 도대체 무엇이 이런 전환을 가져왔을지 흥미로운 문제의 하나라고 할 수 있다. 밀은 나중에 이야기하겠지만 서아시아에서 기원한다. 그것은 5000년 전쯤에 육로, 지금의 신장 위구르를 통하여 중국에 이르렀다고 생각하는데, 당시 그곳은 중국 문화가 아직 미치지 않았던 시대이다. 밀이 도래한 당시의신장 위구르 자치구를 포함하여 중앙아시아에 대한 연구가 기대되는 바이다.


더구나 최근 중국에서 행한 농경의 기원에 관한 연구에서는 민족주의를 시사하는 듯한 '하나의 중국론'에 입각한 논조가 두드러진다. 예를 들어, 허난성의 가호賈湖 유적(8000년 전)에서 볍씨가 출토되었는데, 그것이 야생 벼인지 재배 벼인지를 둘러싼 논의가 일어나고 있다. 만약 거기에 야생 벼가 있는 동시에 그곳이 벼농사의 기원지 가운데 하나에 포함된다고 한다면, 벼농사의 기원지는장강 유역에서 단숨에 황하 유역에도 이를 만큼 넓은 지역을 포함하게 된다. 그러나 생물학적으로 고려하면, 가호 유적 일대에 야생 벼가 있었다고 생각하기는 어렵다.



열대에서 벼농사의 개시


열대 계절풍 풍토는 인도차이나 반도에서는 도서 지역의 열대우림으로 이어지는 '우록림雨綠林'의 풍토이다. 이곳은 우기와 건기가 비교적 뚜렷하게 구별되어, 건기에는 상당히 건조하다. 이 강한 건조함이 우록림의 나무들이 건기에 낙엽이 지게 하는 원인일 것이다. 인도차이나 반도와 버마(미얀마)부터 서부 지역에서는 똑같은 열대 계절풍이라 해도 기후 요소가 꽤 다르다. 왜냐하면 인도차이나 반도는 그 위도가 북위 20도에서 10도에 넓게 걸쳐 있는 데 반하여, 버마부터 서부 지역은 남단이 북위 8도에서 인도차이나 반도와 늘어서 있으면서 북으로는 북회귀선(북위 23.5도)을 넘기 때문이다. 인도에서 벼는 갠지스 유역 일대에 주로 분포한다. 남부는 데칸 고원의 반건조지대이다. 


그러나 열대 아시아에서 농경의 시작은 온대의 그것보다 훨씬 뒤쳐진다고 생각한다. 열대 아시아의 고고학 유적의 발굴이 온대의 그것보다 훨씬 뒤쳐져 있다고 해도, 농경의 증거를 남긴 옛 시대의 유적은 발견되지 않는다. 인도차이나 반도에서 인간의 집단이 큰강 하구의 삼각주에서 침입했던 것은 매우 최근의 일이라고 생각한다. 예를 들어 태국에서는 지금의 수도 방콕이 개발된 것은 겨우 18세기의 일이었고, 그전에는 정치경제의 중심이 70킬로미터 북쪽의 아유타야였다. 아유타야 이전에는 차오프라야강을 더 거슬러올라간 수코타이가 수도였다. 아유타야 왕조 시절에 아유타야는 운하를 통하여 곧바로 바다로 나갔다. 방콕 평원이 지금처럼 된 것은 겨우 200-300년에 지나지 않는다.


같은 일이 메콩강 삼각주에서도 있었다. 메콩강 삼각주는 현재 개발되어 인구밀도가 높은 지역인데, 여기에 사람들이 이주한 건 불과 200-300년 전의 일에 지나지 않다. 인도차이나에서 인간 집단은 강의 상류에서 하류로 이동했을 것이다.


인도차이나 대륙부에서는 전통적으로 화전으로 벼농사를 행해 왔다. 단, 고고학적으로 화전을 증명하기란 어려워서 그것이 어느 시기까지 거슬러올라가는지는 밝혀지지 않았다. 이러한 지역에서 농경을 시작한 걸 고고학적으로 연구하는 일이 앞으로의 큰 과제이다. 


인도차이나부터 열대 도서에서 농경은 아마 4000년 전쯤 시작되었을 것이라고 생각한다. 그렇긴 하지만, 파퓨아뉴기니에서는 9000년 전쯤 인간이 활동한 흔적이 나타나고 있어 지금까지의 학설이 확 바뀔 가능성이 있다. 하지만 그것은 중국을 출발해 태평양으로 확산된 몽골로이드 이전 인류일 가능성이 높기 때문에, 그들의 활동과 몽골로이드에 의한 원시적 농경 사이에는 단절이 있다고 생각하는 편이 자연스럽다. 


갠지스강 유역의 이른바 강가Gaṅgā 평원 북서부의 유적에서 8600년 전쯤의 볍씨가 출토되어 그것이 재배 벼인지 야생 벼인지를 둘러싼 논의가 있다.




사막의 풍토와 농경



사막의 풍토

 

와츠지의 '사막'은 꽤나 개념적이다. 왜냐하면 그가 보았던 '사막'은 아덴 부근(즉, 아라비아 반도의 아주 일부)의 사막이어서, 유라시아 내륙부의 사막이 아니다. 여기에서 말하는 '사막의 풍토'는 이 책에 끼워 넣은 지도의 연 강수량 400mm 선 안쪽의 건조, 반건조 지대이다. 


이 지대 안에는 예를 들면 다클라마칸 사막 같이 연 강수량이 겨우 몇 밀리미터에서 몇십 밀리미터인 극단의 건조지대가 있어서, 식생을 거의 찾아볼 수 없는 이른바 '사막'의 경관이 펼쳐져 있다. 그러나 그 주변에는 그곳보다는 강수량이 많은 토지도 있어 약간의 식생을 찾아볼 수 있다. 또 이른바 사막은 건조만이 문제인 토지가 아니라, 그 강한 염성에 의하여 식생의 생육을 방해받는 토지가 많다. 


사막의 풍토에서 이루어진 전형적인 농경이 유목이다. 이는 약간의 식생을 필요로 하여, 양 등의 무리를 이루는 가축을 이동시키면서 사육한다. 더구나 사막의 풍토에서는 양과 염소 외에 소와 말, 낙타 등 다른 대형 가축이 태어난 것으로 알려져 있다. 


연 강수량이 400mm 이하면 밀을 재배하기 어렵다고 한다. 그래도 보리는 300mm 정도인 곳에서는 재배할 수 있다고 한다. 또 기장과 조 등의 잡곡은 더욱 소량의 강수로도 재배할 수 있다.


사막의 풍토가 지닌 한 특징은 오아시스이다. 오아시스는 지하에 있는 수맥이 지표에 이르는 곳에 생기는 녹지로서, 큰 오아시스에서는 벼농사까지 이루어진다. 


한편, 토양의 염성화를 불러온 이유로 유력한 설의 하나가 염해이다. 그것은 관개수에 포함된 미량의 염분이 농경지에 축적되거나,아니면 태고부터 지하에 괴어 있었던지 하여 일어난다고 한다. 염해가 생기면 그 토지는 염분을 씻어내지 않는 한 농경지로 사용할수 없다. 중앙아시아의 아랄해 주변에서는 옛소련이 호수로 흘러들어오는 아무다리야강의 물을 끌어다 대규모 면화밭을 개간했다.그로 인해 아랄해로 흘러들어오는 수량이 줄어 호수의 면적이 뚜렷하게 감소했다. 또 면화밭에서는 토양의 염성화에 의해 광대한 면적이 사막화되었다. 그렇게 하여 사막의 면적이 해마다 늘어나고 있다.



중국에서 사막의 풍토


다클라마칸 사막의 동쪽 근처에서 발견된 소하묘小河墓 유적(3000여 년 전)은 묘의 유적으로 유명하다. 지금까지 200여 개의 미라가 담긴 관이 발견되었다. 그 관은 호양나무(야생 포플러)의 나무판을 짜맞추어 만든 것으로, 그 뚜껑 부분은 살아 있는 소의 생가죽으로 덮어 놓았다. 관 안에는 풀로 엮은 바구니가 있고, 그 바구니 안에 보통 밀과 기장으로 여겨지는 식물의 씨앗이 들어가 있다. 이러한 것으로부터 3000년 전의 타클라마칸 사막에서는 밀 등과 소, 양 등을 조합한 복합적인 농업+목축 체계가 있었음을 알 수 있다. 이 지역은 또한 문헌에서도 과거 2000년에 걸쳐서 건조화가 진행되었음이 밝혀졌다. 뒤에 서술하듯이, 풍토에는 역사성이 있어 그 기후와 생태계의 상태는 시간에 따라서 시시각각 변화한다. 조금 대담한 추측을 더하자면, 사막의 풍토 가운데 적어도 그 일부는 지금과 같은 건조 상태가 아니었다고 생각할 수 있다. 


이 가설은 누란왕국의 발굴조사에서도 밝혀졌다. 누란왕국은 기원전 4000년 전쯤에 기록에 나타나, 그 뒤 약 800년에 걸쳐서 존속했다고 한다. 누란왕국의 위치는 고고학적으로 엄밀하게 밝혀지지는 않았지만, 공작강孔雀川의 하류에서 발견된 몇 곳의 유적으로 비정하고 있다. 이른바 뤄부포에 있었다고 추정된다. 일찍이 호수의 기슭이었다. 누란왕국은 인구가 1만4천 아니면 1만7천이라고 기재되어 있음에도 불구하고, 현재 그에 상당하는 규모의 마을은 전혀 보이지 않는다. 또한 스웨덴의 탐험가 S. 헤딘이 탐험할 때 카누로 내려갔던 공작강에는 이제 거의 물이 없다. 이러한 것으로부터 타클라마칸 사막의 건조화는 이 100년 사이에도 진행되었다는 걸 알 수 있다. 


타클라마칸에서부터 1500킬로미터 동쪽의 헤이허 유역에서는 이 1500년 사이 강물을 이용을 둘러싸고 유목민과 농민의 이해 대립이 있었다(日高, 中尾 2006). 반건조지대에서는 이처럼 수리권을 둘러싼 다툼이 늘 발생한다.  



고대 문명과 염해


그런데 '사막'의 풍토에서 사막화는 어떻게 하여 발생하고, 또 진행되는가? 이에 대하여 여러 가지 설이 있는데, 대부분은 오랜 기간의 기후변동에서 그 원인을 찾고 있다. 하지만 최근의 사막화는 인위적인 요인이 크다는 설도 있다.


Maekawa(1974)는 고대 메소포타미아 문명의 시기(우르 제3왕조)에 앞에 언급한 메카니즘에 의해 염해가 발생해 겨우 25년 사이에 그때까지 경작할 수 있었던 밀을 재배하지 못하게 되었다는 기록이 있다며 염해설을 지지했다. 그와 같은 일은 고대 인더스 문명에서도 일어났다고 한다. 또 누란왕국이 쇠망한 원인으로 이 염해를 드는 연구자도 있다(山田 2006). 다만, 예를 들면 오사카교육대학의 이토 토시오伊藤敏雄 씨와 같이 이에 이론을 제기하는 연구자도 있다. 인더스 문명의 범위에서도 특히 남부의 구자라트 지방에서 토양의 염성화가 심각하다고 한다. 누란왕국의 쇠망처럼 염해가 인더스 문명이 붕괴한 직접적 원인이었는지, 아니면 그것과 인과관계가 없는 것인지는 알 수 없다. 그러나 어느 쪽이든, 장래의 기후변동 등에 의하여 강수량이 늘어났던 곳에서 풍요로운 대지가 회복하는 것은 아니라는 점이 확실하다.


이러한 과거의 염해가 정말이었다면, 토양의 염화에 의한 사막화는 인위적 색채가 짙은 현상이었던 셈이다. 사막화와 같은 전 지구수준의 환경문제는 지금까지 걸핏하면 기후변동 등의 자연현상이라고 받아들여졌다. 그러나 현재 이러한 생각은 어쩔 수 없이 재검토하고 있다. 





목장의 풍토와 농경



목장의 풍토


목장의 풍토는 대개 유럽과 겹친다. 유럽에서 농경의 확산은 벨우드(2008)에 의하면 1만 년 전에 시작되어 이베리아 반도에서는 7600년 전쯤에, 영국에서는 6000년 전쯤에, 그리고 북유럽에서는 2500년 전쯤에 전해졌다. 이러한 시간차와 함께, 재배되었던 작물은 지역에 따라 매우 달라진다. 지중해 연안 지방에서는 지금도 사배체인 듀럼밀이 널리 재배되고 있다. 미국 농무성의 통계에의하면, 지중해 지방에서 가장 마카로니밀을 많이 생산하는 곳은 이탈리아(연간 약 400만 톤), 터키(230만 톤), 스페인(210만 톤), 알제리(200만 톤), 프랑스(140만 톤) 순이다. 이에 대하여 같은 유럽에서도 독일은 겨우 2톤밖에 안 된다. 한편 빵밀 쪽은 전 유럽에서 대개 널리 재배되고 있다.


마카로니밀과 대조되는 것이 감자이다. 감자의 생산량은 유럽에서 우크라이나, 독일, 폴란드, 벨라루시, 네덜란드, 프랑스 순으로서 '북고남저'의 경향이 뚜렷하다. 잘 알려져 있듯이, 감자가 유럽에 전해진 것은 16세기 이후의 일이다. 특히 북유럽에 전해진 건남유럽보다 훨씬 나중의 일이었다. '감자 이전의' 유럽, 특히 북유럽에서 주곡은 보리와 호밀, 귀리 등 이른바 '맥류'라는 잡곡의 무리였다(벨우드 2008).


그러나 목장의 풍토를 형성하는 기초가 되는 것은 무엇보다 목축이다. 목장의 풍토에서 그 근간이 되는 생업은 이른바 '무리 가축'이라는 큰 무리를 단위로 이동하는 가축을 이용한 목축이다. 이것은 원래 서아시아에서 발단한 일이다.



목장의 풍토를 바꾼 신대륙의 농경 요소


목장의 풍토는 16세기까지 맥류+젖, 육류가 조합을 이룬 풍토였다. 그러나 그 생산성이 반드시 높은 건 아니고, 특히 북유럽의 식량생산은 비참한 수준이었다고 한다. 그 모습을 크게 바꾸어 놓은 것이 16세기에 도입된 감자였다. 감자는 남아메리카 원산으로, 신대륙의 '발견'에 의하여 유럽에 전해진 신참 식량이다. 신참이지만 감자는 유럽의 풍토에 잘 적응했다. 밀레의 '만종'에는 저녁에 교회 종소리에 기도를 드리는 농부들의 발 밑에 감자가 그려져 있는 것을 볼 수 있다. 


감자는 생산성이 매우 낮았던 유럽 북부에서는 남부보다 아주 빨리 전파되었다. 다만 감자는 그 덩이줄기에 의하여, 즉 영양번식에 의하여 자손을 늘리게 된다. 물론 씨앗으로 번식하는 일도 불가능하지는 않지만, 대부분의 경우 싹 부분을 남기며 자른 씨감자로 늘리게 된다. 씨감자로 늘어난 각 개체는 말하자면 복제물로서, 유전적 다양성이 부족한 집단이 급속하게 늘어나는 셈이다.


1980년대 감자는 영국부터 아일랜드에서도 주요 작물로 땅을 차지하고 있었다. 그런데 이 감자에 역병이란 질병이 발생했다. 질병은 순식간에 섬 전체로 퍼지고, 감자를 파멸시켰다. 절반이 감자였던 섬은 눈 깜짝할 사이에 기근에 빠졌다. 역병은 이듬해에도, 그 다음해에도 발생하여 혼란이 이어졌다. 이후 몇 년 동안 아일랜드를 빠져나온 난민이 200만을 넘었다고 한다(Zuckerman 2003).


그밖에도 남미 원산으로 세계를 돌아다닌 식량이 있다. 옥수수와 토마토, 고추 등이 그것인데, 이들은 감자와 마찬가지로 겨우 400년 사이에 세계를 돌아다녔다.



목장의 풍토와 사막의 풍토가 갖는 일체성


풍토에는 역사성이 있다. 즉 영원히 불변하는 풍토란 없다. 와츠지는 '풍토의 역사성'이란 말을 사용하면서 이를 의식하고 있었을 것이다. 앞에서도 썼듯이, 타클라마칸 사막의 동쪽 끝과 우즈베키스탄 남부에서는 건조함이 지금에 비하여 아주 경미했다. 현장 3세의 여행기에서도 그 행보가 이르른 곳에 나라가 있거나 사람들이 살고 있었던 모습이 묘사되어 있다(長沢 1998). 사막의 풍토의 전역이 그러했는지 어땠는지, 일찍이 그곳은 농업, 목축업이 행해진 풍토였던 것을 살필 수 있다.


그곳에 있었던 작물과 가축이 현재 목장의 풍토와 유사한 걸 보면, 사막의 풍토가 예전에는 목장의 풍토와 유사한 경관을 가지고 있었던 것이 아닐까 생각하게 된다. 또 그림1에 보이듯이, 중국 북서부에서는 마치 사막의 풍토와 계절풍의 풍토에 끼어 있는 모양으로 목장과 비슷한 풍토를 볼 수 있다. 상상을 마음껏 한다면, 사막의 풍토는 3000년쯤 전에는 현재 목장의 풍토 같은 경관을 나타내고 있지 않았을까? 그것이 어떤 이유로 인해 바다에서먼 일부 지역에서 건조함이 진행되어 지금 같은 사막의 풍토가 형성되었다고 생각할 수 있을 듯하다. 이 점에 대한 상세한 건 앞으로 연구할 주제의 하나로 남겨두고 싶다. 또 이 시리즈에서는 사막의 풍토와 목장의 풍토를 합쳐서 '맥류의 풍토'라고 부르고 싶다.


여기에서 계절풍의 풍토와 맥류의 풍토에 있는 농경 요소를 비교해 보자.


먼저 곡류에 대하여. 계절풍 풍토에서 곡물은 먼저 뭐니뭐니 해도 벼이다. 다음 메밀도 중국에서 생겼다고 한다. 백합, 칡 등 일부 뿌리식물도 계절풍에서 생겼을 것이다. 한편 맥류의 풍토에서 생긴 것은 밀, 보리, 귀리, 호밀 등 여러 '맥류'이다. 콩과에 대해서는 대두, 팥 종류가 계절풍 풍토에서 생긴 콩임에 대해, 맥류의 풍토에서는 누에콩, 병아리콩 등이 생겼다.


가축으로는 계절풍에서 생긴 건 무리를 이루지 않는 여러 '집 가축'인 돼지나 가금류 외에 물소, 인도 혹소 정도이고, 나머지는 눈에 띄는 것이 없다. 한편 맥류의 풍토에서는 세계의 주요한 무리 가축의 주축인 소, 말, 양, 염소가 기원하고 있다. 


식품의 보존기술의 하나인 발효에 대해서도 두 풍토 사이에는 큰 차이가 있다. 계절풍 풍토에서 발효는 대부분 곰팡이 종류인 누룩곰팡이가 쓰인다. 이 지역의 양조주와 증류주(모두 곡물을 원료로 함) 대부분은 이 방법으로 만든다. 또 된장, 간장, 청국장 같은 고유한 발효식품도 대부분이 미생물을 이용한 발효법으로 만들고 있다. 다만식해나 어간장 같은 식품에서는 그 방법이 조금 다르다. 한편 맥류의 풍토에서 발효법은 유산균을 이용하거나 또는 체내의 효소를 이용하는 것이 중심이다. 이집트에서 기원한 맥주는 엠머밀의 빵을 설구워서 그대로 살아남은 아밀라아제의 힘을 이용하여 녹말을 당으로 바꾸는 방법으로 맥주를 만든다.




남단과 북단의 풍토



북쪽 회랑


유라시아의 북단은 북극해에 접한 매우 추운 땅이다. 토지는 영구동토이고, 지표에는 지의류 이외의 식물은 거의 없다. 여기는 쾨펜의 기후구분도에 따르면 한대(E 지역)이다. 여기에서는 순록을 사육하는 것 말고는 농경의 요소를 거의 찾아볼 수 없다. 그 남쪽에는 타이가라고 부르는 침엽수를 중심으로 한 숲이 펼쳐진다. 쾨펜의 냉대(D 지역)에 해당한다. 이 지역에서는 봄밀, 호밀, 순무, 메밀 등이 재배되어 왔다. 겨울철은 어떠한 경작도 할 수 없고, 여름철도 짧다. 봄밀이란 초봄에 심어서 여름철에 생육하고, 가을에 수확하는 재배방식을 취하는 밀로서, 그 전용 품종이 존재한다. 


하지만 이 지역은 계절풍 북부에 농경이 건너오게 된 중요한 역할을 수행했다. 왜냐하면 몇 가지 재배식물이 여기를 통하여 서쪽에서 동쪽으로 운송되었을 가능성이 높기 때문이다. 그래서 이 지역을 '북쪽 회랑'이라 부르면 좋겠다. 구체적으로 작물의 이름을 들자면, 순무와 보리, 우엉, 메밀 등이다. 이 가운데 보리와 순무는 다른 위도대에서 적응하는 여타의 품종군이 있다고 알려져 있어, 여러 경로를 거쳐 전파되었다고 생각한다. 상세한 건 '일본의 풍토'에서 이야기하자.




인도의 풍토와 농경


인도의 풍토도 흥미로운 연구 주제의 하나이다. 인도는 계절풍 권역이지만, 그 광대함과 기후, 지형의 다양성 때문에 한마디로 '계절풍'이라고 묶을 수 없는 존재이다. 특히 반건조지대에 걸쳐 있는 남인도에서는 이곳 고유의 작물이 옛날부터 재배되어 왔다.  또한 이 지역은 일찍이 아프리카에서 기원한 작물을 유라시아에 최초로 들여온 장소라고 지목되며, 독자의 농경문화를 형성해 왔다. 


와츠지는 인도를 '계절풍이 가장 뚜렷하게 드러나는 토지'라고 하는데, 그의 풍토론과 마찬가지로 풍토에 주목하여 비교문명론의 논의를 전개한 우메사오 다다오梅棹忠夫는 인도를 동양과 서양에 대비해 '중양中洋'이라고 불러 두 지역과 구별한다.


계절풍 풍토의 벼, 사막과 목장, 즉 맥류 풍토의 맥류와 마찬가지로 인도의 풍토를 특징하는 작물을 들자면 '잡곡'이라 할 수 있을 것이다. 조, 피, 기장 등의 종으로 대표되는 'millet' 외에 인도 고유의 잡곡도 있다. 또 콩 종류에서도 인도 고유의 종이 있다(前田, 1987). 특히 다양한 콩 종류는 그 종교적 금지에 의하여 육류(때로는 알까지도)를 입에 대지 않는 많은 인도 사람들에게 귀중한 단백질 공급원이 되었다. 그래서 여기에서는 콩과작물과 벼과작물을 섞어심는 재배양식이 있다고도 한다. 콩과식물의 대부분이 공기 중의 질소를 식물이 이용할 수 있는 형태로 변화시키는 '질소 고정' 능력을 가지고 있다. 이 콩과작물이 지주의 임무를 수행하면서 질소 성분의 공급을 받아서 자라는 벼과작물을 함께 재배하여 서로 돕는 관계를 구축하는 독특한 농법이다. 벼농사에 대해 말하자면, 인도에서도 벼농사가 행해졌는데 인도의 벼농사는 계절풍의 그것과 같은 것으로 논할 수 없다(이 점에 대해서는 이 책 말미의 대담에 나온다).


인도의 '중양적' 성격은 그 지리적 위치와도 관계가 있다. 우리들의 프로젝트와 같이 지구연에 속한 '인더스 프로젝트'의 오사다 토시키長田俊樹 교수에 의하면, 인더스 문명은 벼와 맥류를 모두 수용한 문명이라고 한다.


이러한 인도의 독자적 풍토에 대해서는 농경과의 관련성부터 더 상세하게 밝힐 필요가 있다고 말할 수 있을 것이다.



열대 도서부의 풍토와 작물의 진화


열대 도서의 농경 풍토는 '뿌리작물 농경의 풍토'라고 말할 것이다. 그곳은 토란, 얌 등 덩이줄기 식물, 빵나무와 바나나, 판다누스 등의 보고임과 함께 그것들 가운데 몇 가지는 이곳이 원산지이다. 이러한 식물들은 말할 것도 없이 영양번식을 하는 식물이다. 그것은 계절풍이나 맥류 풍토의 주요 작물, 특히 맥류가 한해살이 작물인 것과 대조적이다. 


한해살이 작물은 1년에 1회, 반드시 번식을 행한다. 종자는 통상 3년쯤 지나면 발아력을 잃기 때문에, 어느 종의 품종이나 종자인 채로 오래 놔둘 수가 없다. 종자를 저온, 건조 등의 조건으로 놔두면 장기간 보존할 수 있다는 건 20세기 후반에 발명된 기술이다. 게다가 한해살이 식물의 종자는 뿌리면 다음 농사철에는 반드시 죽기 때문에, 그 농사철의 마지막에 파종했던 것에서 다음 세대의 종자를 확보해야 하는 숙명이 있다. 즉 어느 문화가 한해살이 작물을 가지고 있다는 건 파종과 채종의 주기를 끊임없이 계속 행한다는 것과 마찬가지이다. 이곳에서 한해살이 작물의 농경이 일단 시작되면 이제 원래로는 돌아가지 못하는 이유가 존재한다.


동시에 이런 점은 한해살이 작물이 1년에 1회의 유성생식으로 급속히 진화하는 기회를 획득한다는 걸 의미한다. 한해살이 식물 가운데에는 제꽃가루받이를 하는 유형과 딴꽃가루받이를 하는 유형이 있다.  이 가운데 제꽃가루받이를 하는 유형은 많은 품종을 만들어내기 쉽고, 그만큼 환경이 상이한 여러 지역에 전파되기 쉽다.


한편 여러해살이 풀은 극단적으로 말해 몇 백 년, 몇 천 년에 걸쳐 유성생식하지 않기 때문에 진화적으로는 몇 번의 변화도 일어나지 않는다. 그들은 상대적으로는 이동도 느리고, 높은 토착성을 나타내는 경우가 많다.





일본의 풍토



일본의 남북


일본 열도의 문화 요소를 크게 두 가지로 나눌 수 있다는 지적은 이미 상록활엽수림 문화를 둘러싼 논의 안에서 발생했다. 이 지적은 일본의 숲이 동북부의 낙엽활엽수림대와 남서부의 상록활엽수림대로 크게 양분될 수 있다는 것을 기초로 하고 있다. 농경 문화에 대해서도 이 지적은 그대로 해당된다. 다만 남북(또는 동서라 하는 것이 적당할지 모름)을 나누는 선은 문화 요소에 따라 조금 다르다. 남북의 다른 농경 요소와 그에 관련된 요소를 그림2에 표시해 놓았다.



그림2


요소

경계

동(북)

서(남)

조몬 벼농사

순무 품종

보리 품종

보리 품종(겉보리)

파 품종

잠재식생(숲의 수종)

생쥐의 계통


매우 드묾

서양종 순무

W형이 있음

겉보리

흰파(카가加賀 파)

낙엽수림

식용(E. crus-galli)

mus 형

있음

일본 순무

E형

쌀보리

청파(9줄 파 등)

상록활엽수림

잡초 피(E. oryzicola)가 많음

castaneus 형


'남북'의 경계가 가장 북쪽에 있는 요소로는 생쥐, 왕대 등이 있다. 왕대 분포의 북방한계는 아키타현 부근이라든지, 쓰가루 해협이라든지, 또는 후쿠시마현 부근이라 일컬어진다. 경계선이 그 다음으로 북쪽에 치우쳐 있는 것이 순무, 파, 보리 등이다. 순무를 예로 들면, 순무에는 아종 수준에서 2가지 품종군이 있다. 이 가운데 서일본을 중심으로 분포하는 품종은 일본 순무라고 부르며, 잎 등에 가느다란 털이 나 있는 것이 특징이다. 한편 북일본 등에 분포하는 품종은 서양종 순무라고 부른다. 야마가타현의 쇼나이庄内 지방을 중심으로 재배되는 이른바 '붉은 순무'가 그 전형이다(靑葉, 2000). 파의 분포도 이와 유사하여 북(동)일본에는 이른바 흰파가, 반대로 남(서)일본에는 9줄 파 형의 녹색 부분이 많은 유형이 분포해 있었다. 경계선이 가장 서(남)쪽에 있는 것이 피, 수종 등이다. 조몬 토기의 한 유형인 돌대문 토기의 분포도 이 선과 같다. 또 비교적 최근에 등장했다고 생각되는 사투리의 동서 차이, 간장의 기호성 차이 등도 대체로 이 선이거나, 약간 동쪽 지역에 경계를 가진다고 한다. 


여기에서 중요한 것은 일본 열도에서 남북(서동)의 요소가 앞에서 이야기했던 유라시아에서 동서의 요소와 일치하는 것이 많다는 점이다. 서양종 순무의 분포역은 시베리아에서 더 서쪽에 이른다. 한편 일본 순무의 분포역은 중국의 강남 지방이 중심이다. 거의 마찬가지로 보리도 이에 해당한다. 즉, 이러한 재배식물들을 똑같은 순무, 보리라고 하지만, 실은 두 가지 다른 유형이 건너와 적어도 하나는 중국의 강남에서, 그리고 다른 하나는 유라시아의 서쪽에서 각각 따로 전해졌다고 생각한다. 즉, 일본 열도의 풍토는 그 남(서)반분은 계절풍 풍토이고 북(동)반분은 훨씬 목장의 풍토와 유사성을 나타낸다. 그런 맥락에서 일본은 일면이 아니다. <여러 가지 일본(いくつもの日本)>(赤坂, 2000)이란 발상은 풍토의 입장에서도 정당성을 갖는다.



일본에서 농경의 시작


일본 열도에서 농경의 시작은 언제로 잡으면 좋을까? 이전에는 고고학을 중심으로 조몬시대는 수렵채집의 시대, 야요이시대 이후는 논을 수반한 농경의 시대라고 단순하게 생각해 왔다. '조몬 농경론'도 되풀이하며 나왔지만, 지금까지는 어느 것도 세상에 알려진 것이 없었다. 그래도 최근에는 점점 '조몬-야요이'를 재검토하자는 기운이 높아지고 있다. 조몬 농경론에 부정적인 견해는 주로 논의 유적이 조몬시대의 만기의 종말기까지 출현하지 않았다는 점 때문이다. 일본 학계에서는 오랫동안 농경이라 하면 벼농사, 게다가 논벼농사라는 견해가 마치 상식인 것처럼 지배적이었다. 이와 같은, 말하자면 '벼농사 지상주의'라고 할 만한 무대에서 조몬 농경에는 의론의 여지가 없었던 것이다. 


그러나 홋카이도에서 피를 재배했을 가능성이 지적되는 점, 아오모리현과 산나이마루야마 유적에서 밤나무의 재배에 대한 연구 등에 의하여 농경이란 무엇인가 하는 본질적인 의론이 등장하게 되었다. 특히 서일본(여기에서는 와카사만과 이세만을 잇는 선의 서쪽)에서는 조몬시대 후기에 들어오면 여러 유적에서 벼잎의 세포 화석이 검출되고 있기 때문에 이 시대에는 벼농사가 있었을 가능성이 높다. 한편, 동일본에 언제 벼농사가 전해졌는지는 지금으로서는 알 수 없다. 이러한 점을 종합하면, 앞에서 기술했듯이 조몬시대의 일본 열도는 크게 남북(동서)으로 양분할 수 있고, 북쪽 조몬은 훨씬 맥류의 풍토와 상관되었을 것이라 생각할 수 있다.




풍토와 지구 환경문제



풍토에 적응하기


앞에서 와츠지의 풍토론이 지닌 문제점의 하나로 사람의 기질이나 사상 같은 것을 너무 기계적으로 설명하는 점을 들었다. 그러나 이것이 개인이나 사회의 기질과 사상이 그 풍토의 기후, 생태계나 농업 등의 영향을 완전히 받지 않는다고 주장하는 게 아니다. 아니, 기질이나 사상 같은 것은 확실히 그 풍토에 강하게 영향을 받는다. 그것이 또 풍토에 적응한 생활이나 농경문화의 생성에도 관여해 왔다. 


일본에서는 전통적으로 토착 애니미즘적인 자연관과 세계관의 영향이 뿌리 깊었다고 생각하는데, 고대 이후에 건너온 불교는 이 애니미즘적인 사상을 받아들여 독자적 불교를 형성해 갔다고 말할 수 있다. 나는 이와 같은 일본 특유의 사상이 적어도 중세까지 사람들의 넉넉함, 또는 자연에 따르는 생활방식의 기반이 되어 왔다고 생각한다. 예를 들어, 이 시리즈 5권에서 소개하는 오사카부의 이케시마池島와 후쿠만지福万寺 유적에서 검출된 중세의 '시마바타島畑'는 그 구체적 사례라고 볼 수 있다. 시마바타는 특히 큰 홍수 이후 등에 퇴적된 모래를 쌓아올려 두렁을 만들고 밭작물을 심고, 또 낮은 곳에는 벼를 심을 수 있도록 한 장치이다. 홍수라는 자연의 맹위를 헤어나기 위한 '견딤의 기술'이라 해도 좋다. 현대의 발상으로 홍수의 방지는 오로지 치수사업에 의한 것인데, 실제로 나중에는 이케시마와 후쿠만지 유적의 부근에서도 '자주 넘치는 강'이란 이명을 가지고 있던 야마토강을 바꾸어 놓는 공사가 행해져(1703년) 홍수 피해는 경감되었다. 그러나 이와 같은 대형 공공투자를 할 수 없었던 시대에는 시마바타는 흔히 생각할 수 있던 '견딤의 기술'이었다.



농학적 적응과 공학적 대응


동남아시아의 벼농사에서도 '견딤의 기술' 같은 방식이 있다. 그 좋은 예가 '뜬벼'이다. 뜬벼는 앞에서도 적었듯이, 동남아시아 평야부에서 우기에 몇 미터나 되는 수심에서도 살아가는 벼이다. 벼는 그 줄기에 생기는 마디와 마디의 사이에 있는 분열조직의 세포를 늘려서, 그로 인해 수심에 따라 키를 변화시킨다. 교토대학 동남아시아 연구센터에 있던 타카야 요시카즈高谷好一 씨는 이러한 벼가 지닌 적응력을 이용한 적응 방법을 '농학적 적응'이라 불렀다. 한편, 이외에도 댐을 만들어서 수량을 조절하거나 배수로를 만들어서 물빠짐을 좋게 하면 일반적인 벼를 농사지을 수 있다. 이것을 농학적 적응에 대비해 '공학적 적응'이라 부를 수도 있을 것이다.


태국의 방콕 평원에서는 지금까지 광대한 뜬벼의 논이 펼쳐져 있었다. 즉 농학적 적응을 하여 사람들은 벼농사를 영위해 왔다. 최근 이곳을 흐르는 차오프라야강의 상류에 거대한 댐을 만들어 홍수를 일으키지 않고 토지를 '유효하게' 사용한다는 시도가, 곧 공학적 적응이 검토되기 시작하고 있다. 그렇게 하면 정말 평원의 광대한 토지는 우기와 건기에 관계없이 이용할 수 있고, 계속해서 벼농사도 가능하다. 생산성도 향상될지 모른다. 그러나 이와 같은 공학적 적응이 도입됨에 따라 기존의 뜬벼를 심던 논에 성립되어 있던, 사람들의 삶과 이어져 있던 생태계는 파괴되어 버릴 것이다. 뜬벼의 논은 어로의 장으로 사용되어 거기에서는 벼만이 아니라 잉어과나 메기과의 담수어 등을 잡았다. 또 그들의 배설물이나 물에 녹은 영양분이 뜬벼의 논에서는 거름이 필요 없다고 할 정도로 공급되었다. 뜬벼를 폐지하면 이와 같은 체계를 단숨에 사라지게 된다.


일반적으로 공학적 적응은 생산성을 향상시키는 우수한 적응 방법이라 할 수 있다. 그러나 투자되는 에너지도 많아지는 데다가 예기치 않은 재해 등에는 적응할 수 없는, 유연성이 떨어지는 결정적인 약점이 있다. 그에 반하여 농학적 적응에서는 생산성은 낮지만 생태계의 안정을 손상시키지 않고, 높은 지속성을 가지고 생산할 수 있다. 넓은 의미에서 모두 풍토에 적응하기라 할 수 있는데, 어느 쪽이 풍토의 실태에 꼭 맞는 것인지는 명확할 것이다. 


농학적 적응이 계절풍 풍토의 고유한 것이냐 하면, 그렇지는 않다. 훨씬 예전에 쓸모없어진, 유럽의 중세에 널리 행해졌던 '삼포식 농업'도 일종의 농학적 적응이었다. 그럼 공학적 적응은 단순히 근대화의 산물로 도입된 것뿐일까? 그렇지 않다고 나는 생각한다. 앞에서도 적었듯이, 일본을 비롯한 계절풍 풍토에서는 애니미즘 사상을 현재에 이어받아, 그만큼 농학적 적응을 이어받으려는 행동규범이 여전히 살아있는 것은 아닐까? 풍토의 사상적 우열을 이야기할 요량은 아니지만, 풍토와의 관련에서 생긴 사상이 풍토에 적응하기란 방식에 대하여 지닌 의의를 새로이 검토할 필요가 있지 않을까 한다.



지구 환경문제의 해결을 목표로


처음에 적었던 농업 생산의 모순과 붕괴로 가는 길은 풍토에 따라 가지각색이다. 물을 둘러싼 문제를 예로 들자면 계절풍 풍토처럼 남아도는 물이 홍수와 습해를 일으키는 곳도 있다면, 사막의 풍토처럼 물의 절대량이 부족하건, 그것을 완화하기 위한 관개가 가져온 염해로 고생하는 곳도 있다. 또한 같은 계절풍 풍토에서도 홍수의 상습 지대(일본에서는 수향水郷 지대나 키소산센木曾三川 지대)도 있다면, 반대로 여름철의 적은 비로 가뭄의 피해를 받기 쉬운 지대(일본에서는 사누키讃岐 평야나 오사카 평야의 남부)도 있다. 문제는 매우 지역적이다.


기후변화, 특히 현재 문제가 되고 있는 온난화에 대해서도 어느 작물의 재배 적지가 고위도 지대로 이동해 버린다는 문제가 있는 토지(일본처럼 남북으로 긴 나라는 그렇다)도 있다면, 빙하의 해빙으로 홍수가 빈발하는 문제를 안고 있는 지역도 있다. 강수의 패턴이 변하여 작부체계에 영향이 나타나는 지역도 있을지 모른다. 이처럼 지구 환경문제는 그 근본은 동일한 원인에 지배되더라도, 나타나는 바는 풍토에 따라 여러 모습이 된다.


해결을 목표로 방책을 채택하는 법도 또한 풍토에 따라서 달라진다고 생각한다. 뜬벼의 체계를 채택해 온 열대 계절풍의 사람들은 해마다 홍수에 대해 체념하는 듯한 대응을 채택한다. 2008년 여름, 나는 라오스의 비엔티엔에 있었다. 40년 만에 메콩강의 홍수가 난다 하였는데, 사실 일부에서는 제방이 터져 무너져 침수가 시작되고 있었다. 비엔티엔 시당국은 군을 동원하여 제방 위에 모래부대를 쌓는 대책을 채택했는데, 시 안에서는 양동이와 바가지를 사서 그때를 기다리는 사람들도 많았다. 수위가 예상을 뛰어넘으면 재산의 일부를 잃을 수 있다. 그러나 그들은 강이 범람하면 물고기가 시 안으로 흘러 들어와 생각하지 않게 고기를 잡을 기회라고 생각했다. 관공서와 사무실에서 일하는 사람들조차 예전에는 짚신을 신고 통근하고 있었다. 그것은 사회의 규범의 문제 등이 아니라, 언제 물이 넘을지 모르는 풍토에 사는 사람들이 적응한 모습이었다. 


한편, 공학적으로 적응해 버렸던 일본에서는 일단 홍수가 일어나면 넘친 물도, 고기도, 토사도 모든 것이 재해의 원인이 된다. 물이나 아스팔트 위의 모래는 교통의 장애가 되고, 물고기는 죽어서 부패해 위생 문제를 일으킨다. 이와 같이 생각하면, 적응에 대한 사고방식으로 문제의 해결을 위한 대처가 바뀐다는 걸 우리는 깨닫게 된다. 


게다가 우리는 지구 환경문제의 역사도, 문제에 어떻게 대처해 왔느냐 하는 인간의 역사도 잘 모른 채로 현재에 이르렀는데, 지금 한번 생각해 보아야 한다. 풍토에 적응하는 방식 하나만 해도 이미 크게 변용하려고 하고 있어서, 올바르게 과거를 인식하고 현재와 미래에 도움이 되는 앎을 획득하려 한다는 역사적 시점의 의의는 점점 높아지고 있다고 해도 좋다. 풍토와 그 역사라는 관점(이것을 환경사의 관점이라 해도 좋다)에서 환경문제를 재검토하는 일은 지구 환경문제의 해결을 목표로 한 중요한 과제이다.




마치며


이 시리즈 <유라시아 농경사>는 종합지구환경학연구소의 연구 프로젝트 '농업이 환경을 파괴할 때'의 연구 성과를 공개하는 일환으로 프로젝트의 구성원을 중심으로 한 연구자들의 연속 공개강좌를 기반으로 한 것이다. 서적의 형식을 위하여 새롭게 저술을 부탁한 부분도 많다. 프로젝트의 이름인 '농업이 환경을 파괴할 때'라는 주제는 조금 역설적인 말이지만, 인간에 의한 농업(목축을 포함)이란 행위와 주위의 환경, 특히 생태계와 관계를 맺어 온 역사를 연구하려고 한 것이다. 근저에 있는 발상은 우리들은 이 관계에 대하여, 특히 그 역사에 대한 긴요함을모르는 건 아닐까 하는 점이다. 역사의 연구는 과거에 일어난 일이라는, 눈에 보이지 않는 걸 연구 대상으로 한다. 역사 연구의 기초에 있는 문서만으로는 이 '관계'의 전체 모습을 볼 수 없다. 여러 가지 자연과학의 방법과 조합하는 게 결정적으로 중요하다. 문자가 없는 시대의 일은 고고학의 방법이 유력하다. 이와 같이 농업과 환경의 관계사의 해명에는 분야의 제한을 넘어 학문의 융합이 필요하다. 


지구연의 프로젝트는 그 대부분이 이러한 분야를 횡단하는 양식을 지니고 있다. 이 프로젝트에도 모두 80명 정도의 연구자가 있는데, 그 전문 분야는 여러 갈래이다. 분야의 제한을 넘는 건 서로 다른 언어로 이야기하는 일보다어려울 때도 많다. 그러나 그러한 어려움을 뛰어넘어 기대한 바의 목적을 달성하고 싶다는 생각 때문에 분야의 장벽을 넘은 대화를 시도했다. 이 시리즈도 또한 그러한 대화를 시도한 하나로서 이해해 주시면 고맙겠다. 



728x90
728x90

밀의 원산지라고 일컬어지는 에티오피아는 그런 만큼 다양한 밀 품종이 존재한다고 합니다. 이러한 유전적 다양성 때문에 특정 질병에 대응할 수 있는 유전자를 발견할 가능성이 높지요. 다양한 품종을 보전하는 일이 중요한 까닭이 바로 여기에 있습니다. 생산성만 최고의 가치로 여기며 널리 재배되면 불의의 병충해나 기상재해로 폭삭 망할 가능성도 높아지는 겁니다. 한국의 입시제도처럼 말이죠.


https://undark.org/article/ug99-wheat-stem-rust-5/

728x90
728x90


미국의 농장은 변화했다. 20세기 전반기에 농민은 수천 평의 땅에서 여러 작물과 가축을 키웠다. 오늘날, 대부분의 농민은 훨씬 더 넓은 면적에서 몇 가지나 한 가지 농산물에 특화되어 있다. 그러한 집중은 농민이 더 많은 수익을 내는 데 도움이 되었지만, 한 가지 농상품 가격에 널을 뛰고, 마름병이나 악천후가 엄습할 수 있는 문제에 노출시킬 수도 있다. 


1900년에는 거의 모든 농장에 동물들이 있었다. 21세기로 접어들면서 10% 미만의 농장에서만 젖소와 돼지 또는 닭을 키우고 있다. 예전보다 훨씬 많은 육류를 생산하면서 말이다. 곡물 생산도 더 소수의 농장으로 전환되었다. 2010년에는 6명의 농민 가운데 1명만 옥수수를 재배했다. 


각각의 농상품을 생산하는 농장의 비율


돌보아야 할 동물이 없는 농민들은 더 많은 땅을 관리하도록 해주는 농기계에 투자할 더 많은 시간과 자본을 가지게 되었다.  

컴퓨터로 관리되는 관개와 합성 제초제 같은 기술의 진보도 농장의 규모화를 촉진했다. 1950년대 중반, 트랙터가 미국의 농장에서 일하는 말과 노새를 능가하게 되어 농민들이 더 많은 땅을 떠맡을 수 있게 만들었다. A새로운 기술의 도입도 농민에게서 인간 노동자의 필요성을 줄였다. 


트랙터 대 노동자


1200평당 더욱더 많은 부셀을 생산할 수 있는 하이브리드 옥수수 품종이 2차대전 이후 널리 활용되었다. 그 무렵 유전학자들은 더 많은 고기를 생산하는 닭의 품종을 개발하기 시작했다. 일반적으로 소고기나 돼지고기를 더 많이 먹던 여러 미국인에게 색다른 경험이었다.


평균 닭의 출하 체중                                             즉석요리 닭고기의 무게*


지리적 이점이 전문화를 촉진했다. 중서부의 비옥하고 검은 흙은 옥수수와 대두에 최고였고, 남부의 따뜻한 겨울은 울이 따뜻하여 일 년 내내 여러 종류의 가금류를 사육할 수 있게 했다. 시간이 지남에 따라 아이오와 주는 미국 최고의 옥수수 생산지가 된 한편, 조지아 주는 주요한 닭고기 생산지로 부상했다.  


지역별 작물 판매 비율*


지역별* 가축 판매 비율


아이오와에서 재배한 옥수수의 부셀                           조지아에서 사육하는 닭의 숫자


농장은 더 큰 운영을 위해 합쳐졌다. 특히 드넓어 농민들이 멈추지 않고 커다란 트랙터를 운행할 수 있는 중서부와 대평원에서 그러했다. 

1982-2012년, 농장 농경지의 면적 변화


2005년 제정된 법안에 따라 미국은 정유소에 옥수수로 만든 에탄올을 연료 공급장치에 혼합하도록 하여 그 작물에 대한 수요가 폭증했다. 한편 값싸고 풍부한 러시아와 우크라이나의 밀이 미국의 밀이 쇠퇴하도록 부채질했다.


미국의 전체 경작면적


미국의 농장 가운데 절반 이상이 전문화되었다. More than half of the nation’s farms are specialized.


2011년 농장당 작물의 가짓수


2011년, 2가지 이하의 작물을 재배하는 농장에서 생산된 대두의 비율


2011년, 1가지 작물을 재배하는 농장에서 생산된 과일과 견과류의 비율


2011년, 2가지 이하 작물을 재배하는 농장에서 생산된 옥수수의 비율


2011년, 2가지 이하의 작물을 재배하는 농장에서 생산된 사탕수수의 비율


전문화로 인하여 생산성과 효율성은 높아져, 일부 농상품의 가격이 하락했음에도 농장의 수익성을 올리는 데는 도움이 되었다.


미국의 농장 수익성 


농장의 이윤



그러나 다양성이 감소하며 위험이 초래되었으니, 생산자는 특정 시장의 가격 변동에 더 노출되었다.


1947년 이후 가격 변동*


옥수수와 밀, 기타 농산물 가격이 몇 년 동안 폭락하면서 수많은 농민이 부채를 지게 되었고, 1980년대 이후 가장 큰 농장 폐쇄의 물결이 일어날 수 있다는 우려가 높아졌다. 중서부의 여러 곡물 농가들은 특히 젊은 세대가 농장으로 돌아올 수 있도록 다시 다각화의 방법을 모색했다. 일리노이와 아이오와 주에서는 작물 이외에 돼지나 가축을 다시 사육하고 있다고 주정부의 농업 및 농장 단체의 관계자는 말한다.  


일리노이 주에 새로 계획된 축산 시설         아이오와 주의 신규, 확장 또는 변경된 대규모 축산업 허가


https://www.wsj.com/articles/the-transformation-of-the-american-farm-in-18-charts-1514474480

728x90
728x90

  1. 목차


    이사의 편지 / 머리말 / 전체 요약 / 배경 / 유기농 무경운과 롤러 크림퍼 / 로데일 연구소의 유기농 덮개 실험


  2. 결과

    덮개작물 투입재 / 토양의 질에 대한 효과 / 풀 통제 / 수확량 / 폐기물 생산 / 수익성 / 결과 요약


    협력 농민의 사례 연구

    Genesis 농장 / Swallow Hill 농장 /Meadow View 농장 / Quiet Creek 농장


    유기농 무경운 체계를 시행하기


    출처

    용어 설명

    참고 도서

    추가 문헌






이사의 편지


로데일 연구소는 J.I. Rodale 씨가 1947년 칠판에 우리의 좌우명을 처음 적은 이후 농업을 통해 세계를 더 나은 곳으로 만들기위해 전념해 왔다. 건강한 토양 = 건강한 먹을거리 = 건강한 사람이 우리의 모든 사업을 추동한다.그것이 우리가 모든 노력을 시험하는 시금석이다. 


그래도 J.I. 씨는 건강한 토양이 건강한 먹을거리를 기르기 위한 토대라는 사실을 이해했다. 우리는 오늘 J.I. Rodale 씨의 신념과 Robert Rodale 씨의 수고로 펜실베니아 주 커츠타운Kutztown 외곽에 333에이커 규모의 농장에뿌리를 내리고 계속하고 있다. 


로데일 연구소에서 수행한 연구와 홍보활동은 건강한 토양을 기반으로 하는 농업 체계를 창안하기 위함이다. 60년이 넘는 기간에 걸쳐, 우리는 유기농업을 연구하고 세계의 농부와 과학자들과 의견을 나누면서 재배자를 지원하는 정책을 지지하고 있다.  


지난 수십 년 동안 가장 보람찬 발전 가운데 하나는 유기농 농민을 위한 모범사례를 시험하고 개발하면서 모든 농민들이 채택할 수 있는 기술과 방법을 찾았다는 점이다. 


이 특별 프로젝트를 통해 우리는 유기농업 체계에서 경운과 검은비닐의 사용만이 아니라, 무경운 관행농업 체계에서 제초제의 사용과 관련된 토양의 건강 문제를 해결할 수 있다는 걸 발견했다. 목표는 경운과 검은비닐의 대안으로 유기농 농민들이 무경운의 혜택에 접근할 수 있는지와 모든 농민들이 풀을 관리하고 좋은 덮개작물을 죽이기 위하여 검은비닐과 제초제 이외의 도구를 제공할 수 있는지의 여부를 결정하는 것이었다. 


모든 농민들이 그들의 토양을 보호하고 보존하며 시간과 돈을 절약할 수 있는 새로운 방법을 모색함으로써, 기존의 체계 안에서 창의적으로 가능성을 탐구하는 공동 연구가 필요하다. 관행농업과 유기농업 공동체 사이에 지식을 공유하는 일을 더욱 증진시키고, 그 결과를 연구하는 일은 예상보다 더 강하고 탄력적인 농업을 창출하는 데 필수적이다.  


최고의 과학적 연구와 교육을 통하여 우리는 더 지속가능한 먹을거리 체계를 향한 모든 농민의 여정을 지원할 수 있기를 바란다. 


Coach Mark Smallwood





머리말


1988년부터, Northeast SARE는 농사에 대한 지속가능한 접근법을 발전시키고자 교육과 응용연구를 목적으로 보조금을 제공해 왔다. 그 25년은 많은 학습과 많은 성공만이 아니라 도전도 가져왔다. 변화는 위험할 수 있기에 혁신이 늘 쉬운 건 아니다. — 잘 알려진 사례와 결점, 모든 것이 광범위한 지원을 제공하는 경우가 많다. 덮개를 너무 빨리또는 너무 멀리 덮으면 참여하고자 하는 우리의 매우 많은 수혜자들이 멀어지게 할 수 있다.


그 결과, Northeast SARE는 수혜를 원하는 농민들과 협력 관계를 맺고, 그들에게서 의견을 구하고자 했다. 제안의 계획부터 실행과 결과의 공유까지 공동의 노력으로 간주되었다. 이 과정은 수혜자와 이해관계자 사이의 관계를 강화하고, 과학자부터 생산자뿐만이 아니라 다른 모든 방향으로 흐르는 학습 공동체를 구축한다. 


SARE의 초창기에 이러한 연구 모델을 받아들이도록 특정 종류의 기관이 필요했다. 토지를 허가하는 몇몇 대학과로데일 연구소 같은 소수의 미래지향적 기관들이 이를 보완했다. 로데일을 포함한 초기의 협력자 가운데 상당수는 SARE와 지속적으로 관계를 맺어 오랜 세월에 걸쳐 일련의 혁신적인 아이디어를 모색하고 협력적인 농민 네트워크를 구축했다.


1988년, SARE가 활동한 첫 해에 로데일 연구수는 비디오를 활용해 농민들이 지속가능한 농법을 어떻게 채택할지 실제로 “보게” 하자는 아이디어를 제안했다. 그 이후 로데일은 작물의 수확량과 질병을 관리하기 위한 덮개작물과 무경운, 유기농 곡물 생산, 퇴비 또는 퇴비차의 활용을 탐구하기 위한 일에 대한 보조금을 받았다. 가장 최근에 로데일은 채소 생산에서 호밀-베치의 사이짓기 효과로 풀을 억제하는 동시에 토양의 질소를 증가시키는 연구에 대한 자금을 지원받았다.  


이 프로젝트는 우리의 보조금 검토자들과 공감하는 특성을 보여주었다: 한 가지 농법을 수정하는 점진적 변화를 뛰어넘어 작부체계를 재설계하는 시험이다.  이 사례에서 전체의 목표는 비닐 덮개의 사용을 제거하는 것만이 아니라, 콩과의 질소를 제공하는 동시에 토양 건강의 물리적 측면을 향상시키는 것이 포함된다. 좋은 SARE 프로젝트와 마찬가지로, 농민들은 여러 해 동안 연구 활동에 종사하고 있다. 


Northeast SARE의 교부금을 받고 있는 로데일의 성공은 농업의 체계에 접근하는 방법을 활용해 지속가능한 농업을 연구하는 능력에 달려 있다. 단일 작물, 단일 해충 또는 생산에 대한 단일 장벽에 집중하는 편이 더 쉽고 예측이 가능하다. 공간과 시간에 따라 달라지는 전체 농장의 상호작용을 조사하고 이해하는 일은 훨씬 어렵다. 우리는 이러한 지적 야망을, 특히 새로운 아이디어가 합리적으로 채택될 만큼 현실적으로 근거가 충분할 경우에 칭송한다.  Northeast SARE의 성공은 혁신을 촉진하기 위하여 우리가 제공하는 자금을 사용하는 수혜자 —협력자— 에게 달려 있는데, 항상 우리가 봉사하고자 하는 농촌 지역사회와 협력한다. 



vern grubinger, Northeast SARE 지역 코디네이터








배경


잡초 방제는 세계 곳곳의 여러 농민들이 여러 세대 동안 직면한 주요한 과제의 하나이다. 1940년대 제초제가 도입되기 이전에는 경운과 수작업 및 세계의 일부 지역에서는 물대기를 통해 잡초의 성장을 억제하는 기술이 활용되었다. 1970년대 인구 성장과 함께 매우 급속하게 제초제가 사용되면서 이제는 그것이 잡초를 방제하는 주요한 방식이 되었다. 

오늘날 대부분의 관행농민들은 경운과 제초제를 조합하는 방식으로 잡초를 처리한다. 이러한 기술은 잡초의 개체수를 낮추는 데 매우 효과적이면서, 토양과 환경 및 인간의 건강에 여러 가지로 악영향을 미친다. 토양을 교란하고 제초제를 살포해 토양 생태계에 손상을 가하고, 물을 흡수하고 유지하는 능력 및 양분을 저장하고 순환시키며 좋은 토양의 구조를 유지하는 능력을 떨어뜨린다. 그 결과 침식과 양분의 침출이 발생하기 쉬워지고, 농경지에서 소중한 물질이 제거되며 이 물질들이 흘러가 수자원에 피해를 준다. 또한 토양 생물에 미치는 영향으로, 경운이 쟁기바닥층을 두텁게 형성해 뿌리의 성장과 물의 흐름을 방해할 수 있다. 일부 제초제는 유실되어 하천과 호수 등에 흘러 들어가거나 지하수에 침출되면 환경과 인간의 건강에 해를 끼칠 수도 있다.

1950년대에 검정비닐 덮개가 풀을 억제하는 데 도움이 되는 또 다른 농자재로 시장에 도입되었다. "검정비닐"로 간단히 언급되는 검정비닐 덮개는 석유로 만드는 얇은 플라스특 막으로서, 농민들은 두둑의 표면을 덮고 그 아래로 관개용 관을 설치하곤 한다. 작물은 손이나 농기계로 비닐의 구멍에 옮겨심는다. 비닐은 영농철 막판에 농경지에서 제거하여 폐기한다. 

검정비닐은 그것을 덮은 곳에서 풀이 자라는 걸 매우 효과적으로 방지한다. 맨흙에 채소를 재배하는 것과 비교하면, 검정비닐을 사용했을 때 제초제를 친다거나 노동집약적인 수작업 제초 같은 노력을 매우 경감시킨다. 검정비닐의 또 다른 장점은 토양을 따뜻하게 만들어 파종 시기를 앞당긴다는 점이다. 이러한 이유 때문에 검정비닐은 지난 50년 동안 큰 인기를 얻었다. 


건강한 토양 생물군의 중요성


 건강한 토양은 작물과 농민에게 여러 혜택을 제공하는 다양한 미생물 들이 포하되어 있다. 이러한 박테리아와 원생동물, 선충류, 곰팡이, 미세 절지동물 등이 식물의 잔류물을 분해하고, 토양의 응집력과 다공성을 향상시키며, 토양 유기물과 미네랄의 영양소를 식물이 이용할 수 있는 형태로 순환시키고, 식물을 병원균에게서 보호한다. 그 결과 건강한 토양 생물군과 함께 자라는 식물은 질병 저항성이 더 좋아지고, 가뭄이나 혹서 같은 스트레스에 더 잘 대처할 수 있다. 농지는 수분을 흡수하고 유지할 수 있으며, 침식이 될 가능성이 더 낮아진다.




그러나 검정비닐에는 단점도 있다. 유기농업에서도 허용되기는 하지만, 석유로 만들고 재활용이 어려워 본질적으로 지속가능하지 않다. 검정비닐을 사용하는 농경지 1200평당 45-55kg의 폐기물이 발생한다. 게다가 검정비닐을 사용하면 농경지 표면의 50-70%가 물이 침투할 수 없게 되어 유실과 침식이 각각 40%와 80% 증가한다. 그리고 검정비닐을 사용하는 곳에 제초제와 살충제를 살포하면, 농경지에서 유실되는 이러한 화학물질의 농도가 높아져 환경과 인간의 건강에 더 많은 해악을 미친다. 마지막으로 한여름 검정비닐에 덮힌 토양의 온도가 높아지면서 토양생물군을 균류가 아니라 박테리아 쪽으로 바꾸어 놓으며, 미생물의 스트레스를 높이는 것으로 밝혀졌다. 검정비닐은 1200평당 연간 250-300달러, 폐기에 1200평당 20달러의 비용을 발생시키기도 한다.

이러한 이유들 때문에 연구자들은 검정비닐 덮개의 대안으로 덮개작물 덮개 체계를 탐구해 왔다. 풀깎개, 롤러 크림퍼 또는 덮개작물을 베어 덮개로 바꾸는 농기계를 포함하여, 몇 가지 덮개작물 기반의 채소 생산체계가 과학적으로 개발되고 논의되었다. 



검정비닐이 토양의 질을 손상시키는 반면, 덮개작물 덮개는 토양에 유기물을 첨가하고 토양미생물을 증가시킴으로써 그를 향상시킨다. 연구자들은 지표면에 덮개작물의 잔류물을 남기면 작물의 "질병 저항성이 높아지고, 활력이 증가하며, 상품성 있는 수확량이 높아지고, 작물의 노화가 늦추어진다"는 사실을 밝혔다. 이러한 체계는 검정비닐보다 비용이 적게 들며고 실행이 더 빠르며, 농사가 끝난 뒤 그를 제거하고 폐기하는 데 비용과 노동력이 들지 않는다. 

연구자들이 덮개작물 덮개 체계의 유효성을 개발하고 시연하는 데 큰 진전을 이루었지만, 개발된 체계의 대부분은 덮개작물이 제공하는 잡초 방제를 보충하고자 합성 제초제에 어느 정도 의존하고 있다. 이러한 이유 때문에 로데일 연구소의 연구자들은 잡초를 억제하기 위해 제초제가 필요하지 않은 덮개작물 체계를 개발하는 데 몰두해 왔으며, 유기농업만이 아니라 관행농업의 채소 생산자도 덮개작물 덮개를 활용할 수 있도록 더욱 발전시켰다. 


John teasdale 씨와 Aref abdul-Baki 씨의 작업

John Teasdale 씨와 Aref Abdul-Baki 씨는 모두 미국 농무부의 식물 생리학자인데, 1980년대에 검정비닐의 대안으로 덮개작물 덮개를 탐구하기 시작했다. 그들은 토마토에 털갈퀴덩굴을 베어서 덮는 체계를 개발했다. 토마토를 심기 직전 털갈퀴덩굴을 베어내고, 농사철에 털갈퀴덩굴이 다시 자라는 것과 다른 풀을 통제하기 위해 1-2가지 제초제를 적용한다. 그들의 연구에서 이 체계에서 재배되는 토마토는 검정비닐에서 자라는 것보다 일반적으로 수확량이 더 낫고, 잎의 질병이 적으며, 상업적 비료가 더 적게 필요하다는 사실을 밝혔다. 또한 털갈퀴덩굴 덮개 체계는 검정비닐 체계에서 올리는 수익보다 2/3 정도 더 많은 수익을 올렸다. Teasdale와 Abdul-Baki 씨는 덮개작물 덮개 체계를 검정비닐 덮개의 대안으로 활용할 수 있다는 사실을 입증했을 뿐만 아니라, 이 체계가 토양과 식물, 환경에 유익하다는 사실을 증명했다. 




유기농 무경운과 롤러 크림퍼



유기농 무경운은 무엇인가? 


경운은 파종 전 풀을 관리하고, 거름과 작물의 잔류물을 넣으며, 토양을 개량하는 등의 준비를 하려고 활용되곤 한다. 경운은 때로는 토양 유기물의 분해를 매우 빠르게 촉진하기에 토양에는 좋지 않다. 또한 토양의 구조에 물리적인 손상을 가할 수 있고, 떼알구조와 침투 물길 같은 구조요소를 파괴한다. 경운은 토양을 뒤집기도 하여 토양생물을 교란시킨다. 그래서 유기농 무경운은 유기농업을 겨냥하여 비판을 하곤 한다. 너무 경운을 심하게 하여 토양을 교란시킨다고 말이다. 채소 농민은 특히 여러 번 작물을 심고 한해살이 풀을 관리하려고 1년에도 몇 번씩 토양을 경운한다. 


관행농민들은 제초제를 사용해 풀을 통제하고, 파종을 위해 특수한 무경운 농기구를 활용해 농지에서 경운을 줄이거나 하지 않을 수 있다. 제초제는 유기농업에서 선택할 수 없기에, 대부분의 유기농민은 풀을 통제하기 위해 경운에 크게 의존하며 토양을 경운하는 일로 비난을 받곤 한다. 롤러 크림퍼 같은 지난 20년 동안 개발된 새로운 기술과 도구는 유기농민이 그 생산 체계에서 경운을 줄일 수 있도록 한다. 


유기농 무경운은 세 가지 기본 원리에 근거한다. (1) 토양 생물이 체계를 강화하고, (2) 덮개작물이 비옥도와 풀관리의 근원이며, (3) 경운은 제한적이고 특정 간격으로 한다. 목적과 관념에서, 유기농 무경운은 다른 종류의 유기농법과 매우 비슷하다. 여기에는 유기물과 토양 생물로 토양을 개량하고, 다양하고 비화학적 수단으로 풀과 벌레 및 질병을 관리하며, 토양의 건강과 좋은 관리법을 통해 식물을 건강하게 한다는 것이 포함된다. 그러나 유기농 무경운은 이러한 목표를 달성하기 위하여 여러 방법을 활용한다. 토양을 건강하게 하고 풀을 관리하는 수단으로 경운을 대체하는 덮개작물에 훨씬 중점을 둔다. 




롤러 크림퍼(Roller-Crimper)


롤러 크림퍼는 로데일 연구소가 설계한 특별한 농기구로서, 농민들이 살아 있는 덮개작물을 덮개로 전환시킬 수 있도록 한다. 이 농기구는 덮개작물을 한쪽 방향으로 굴리고, 줄기를 부수어 쭈글쭈글하게 만든다. 적절하게 처리되면 식물체가 죽어 지표를 덮고 풀의 성장을 억제하는 고밀도의 잔류물 깔개를 남긴다. 


이 체계는 생물학과 기계학에 근거하기 때문에 어느 규모에나 적용할 수 있다. 작은 농장이나 큰 농장에서 모두 활용하기에 적합하다. 롤러 크림퍼는 트랙터와 말 뒤에서 끌 수 있고, 아니면 규모에 따라서는 손으로 밀 수도 있다. 트랙터의 앞이나 뒤에 장착할 수도 있다. 앞에 장착하면 무경운 드릴이나 말린 덮개작물에 직접 작물을 옮겨심는 도구를 트랙터의 뒤쪽에 자유로이 설치할 수 있다. 이런 방법으로 덮개작물을 끝내고 한번에 환금작물을 심을 수 있다.


풀깎개와 언더커터 같은 다른 도구도 덮개작물을 덮개로 전환시킬 수 있지만, 롤러 크림퍼는 그것들과 다른 몇 가지 장점이 있다. 연료가 덜 들고, 더 고르게 덮개를 만든다는 점이다. 풀깎개와 언더커터는 군데군데 덮개를 덮지 못하는 곳이 생기지만, 롤러 크림퍼는 땅바닥을 완전히 덮을 수 있는 깔개를 만든다.  



앞쪽에 장착한 롤러 크림퍼. 호밀과 베치 덮개작물을 토양의 깔개로 만든다.





덮개작물을 관리할 때 고려할 사항


덮개작물을 끝내고 다시 자라는 걸 막는 데 100% 성공하려면 굴리는 시기가 중요하다. 대부분의 덮개작물을 굴리는 정확한 시기는 식물에 꽃이 피거나 꽃가루를 생산할 때이다. 식물의 수명주기 가운데 이 단계일 때 매우 취약하여 롤러 크림퍼로 효과적으로 죽일 수 있다. 털갈퀴덩굴의 경우 적어도 75% 이상이 개화해야 하며, 100% 개화했을 때가 이상적이다. 펜실베니아 동부에서 겨울 호밀과 털갈퀴덩굴을 끝내는 적당한 시기는 보통 5월 말이나 6월 초이다. 


풀을 적절하게 통제하기 위해서는 개화기에 도달할 때까지 덮개작물의 바이오매스가 충분해야 한다. 덮개작물은 보통보다 씨앗을 많이 뿌리고, 건조물로 1200평당 약 3-4톤을 생산해야 한다. 이런 이유 때문에 바이오매스의 양이 많은 덮개작물이 무경운 체계에서 가장 잘 작동한다. 또한 탄질비가 20:1보다 높은 걸 선택하는 게 중요하다. 탄질비가 높을수록 탄소가 더 많아 더욱 천천히 분해될 것이다. 이는 농사철 내내 꾸준히 풀을 관리할 수 있도록 한다.  


수확 이후 남아 있는 덮개작물 잔류물은 땅속으로 넣고, 다음 농사철의 덮개작물을 재배할 수 있다. 따라서 농사는 이듬해를 계획하면서 가을에 시작된다. 이런 이유 때문에 유기농 무경운은 장기 계획이 필요하다. 



로데일 연구소의 Je Moyer 씨는 앞에 롤러 크림퍼를 장착하고 뒤에 무경운 파종기를 장착하여 덮개작물을 끝내는 동시에 곧바로 대두를 심는다.
 




 




로데일 연구소의 유기농 덮개 실험





로데일 연구소는 2009년 Northeast Sustainable Agriculture Research and Education(NE SARE) 프로그램의 지원금을 받아서, 토마토와 기타 채소의 생산에 일반적인 검정비닐과 굴리고 베어낸 덮개작물 덮개에 어떤 차이가 있는지 비교했다.  


이 연구의 목적은 서로 다른 덮개 체계의 영향이 어떠한지 측정하는 것이었다. 

1) 토양의 품질과 비옥도
2) 풀 통제
3) 수확량과 폐기물 생산
4) 중소규모 채소 생산의 수익성


덮개작물 덮개가 토양의 품질과 비옥도를 향상시키고, 검정비닐과 비슷하게 풀을 통제하고 수확량을 보여주며, 폐기물을 거의 또는 전혀 생산하지 않고, 채소 생산에 더 유리한 기술일 것이라 예상했다.



설계

 

로데일 연구소에서 행한 실험밭 설계는 아래와 같다. 각각의 처리법은 4번 반복되었다. 아래 표시된 색상과 패턴은 다음에 나오는 도표와 일치한다. 이 실험에서 총 9가지의 처리법이 있었는데, 각각 다음의 덮개작물과 종료법 가운데 하나가 조합되었다.


토마토는 밭마다 한 줄에 45cm 간격으로 심었다. 토마토는 전형적인 재배법처럼 지주를 박고 줄을 띄웠다.




실험밭은 로데일 연구소의 인증을 받아 2009년, 2010년, 2011년 가을에 설치하여 9가지 덮개 체계를 비교했다. 모든 실험밭은 쟁기질과 디스크 쟁기질, 다지기를 하고 9월에 각각의 밭에다 덮개작물을 넣었다. 덮개작물“Aroostook”이란 호밀과 “Purple Bounty”란 털갈퀴덩굴을 활용했다. 털갈퀴덩굴은 1200평에 16kg의 비율로, 호밀은 1200평당 76kg의 비율로, 호밀/털갈퀴덩굴은 1200평당 43kg(호밀 32kg, 털갈퀴덩굴 11kg)의 비율로 심었다.


덮개작물이 겨울을 나고 초봄에 다시 자라도록 한 뒤, 연구진은 처리법 방식에 따라 각각의 밭에서 덮개작물을 끝냈다. 검정비닐 처리법에서는 파종 한 달 전인 5월 초에  덮개작물을 갈아엎었다. 비닐 덮개와 관개호스를 쟁기질하고 몇 주 뒤에 설치했다. 다른 두 처리법에서 덮개작물은 5월 말이나 6월 초에 적어도 절반 정도 개화기에 이르렀을 때(꽃가루를 생산) 풀깎개나 롤러 크림퍼로 베어냈다. 이 시기는 보통 파종하기 1주일 전쯤이다. 


모든 처리구에서 똑같은 수준의 질소가 투입되도록 덮개작물의 양분 분석을 수행했고, 부족한 부분을 보충하여 거름을 주었다. 토마토는 6월 중순에 심었고, 상업용 토마토 생산의 표준안처럼 지주를 세우고 줄을 띄웠다. 점적관개 호스를 덮개 처리구에 더하고, 모든 처리구에 필요에 따라 관개를 했다. 수확은 8월 초에 시작해 10월 중순까지 계속되었으며, 일반적으로 일주일에 한두 번씩 행했다. 농사철 내내 연구진은 토양 수분, 토양의 상태(수분, 온도, 탄질비 등), 풀의 바이오매스와 토마토의 수확량(전체와 시장용)에 관한 자료를 수집했다. 


로데일 연구소의 현장내 연구 이외에도, 펜실베니아와 뉴저지의 협력 농민 4명이 2011년과 2012년 그들의 농장에서여러 덮개 방법을 실험했다. 이 농민들의 도움으로 연구진은 다양한 장소와 토마토, 고추, 수박, 호박, 양배추, 애호박 등 이들이 재배하는 여러 작물을 대상으로 덮개 체계를 실험할 수 있었다. 이러한 현장외 실험의 결과는 이 보고서의 사례 연구 부분에서 볼 수 있다.  



로데일 연구소의  2010년 실험밭. 왼쪽 밭은 호밀/털갈퀴덩굴과 함께 검정비닐을 덮고, 오른쪽 밭은 호밀/털갈퀴덩굴을 베어서 덮었다. 

 






결과 




덮개작물 투입량



덮개작물 바이오매스


이 처리법에서 덮개작물은 검정비닐 실험밭을 경운하는 시기에 맞추어 다른 두 가지 처리법의 덮개작물보다 더 일찍 종결시킨다. 그 결과 검정비닐 처리법의 덮개작물은 생육기간이 짧아져 갈아엎을 때 바이오매스가 더 적었다. 이는 털갈퀴덩굴 덮개작물만 파종한 밭에서는 관찰되지 않았다. 또한 호밀을 추가한 덮개작물은 털갈퀴덩굴만 심은 곳보다 더 많은 바이오매스가 생겼다.   



덮개작물 탄소 투입량


더 일찍 끝냄에 따라 바이오매스가 더 적게 생성된 결과, 검정비닐 처리법에서 덮개작물이 탄소에 기여하는 정도는 유기농 덮개 처리법에서보다 적었다. 이 효과는 털갈퀴덩굴이 검정비닐 실험밭을 경운하기 전인 초봄에 빠른 성장기를 지남에 따라 털갈퀴덩굴만 파종한 처리법에서 덜 관찰되었다. 그러나 호밀을 포함한 실험밭에서 굴리고 베어낸 처리법은 탄소에 기여하는 정도가 검정비닐 처리법보다 평균적으로 60.2% 높았다. 세 가지 서로 다른 덮개작물 사이에서도 탄소에 기여하는 정도에는 차이가 있었다. 털갈퀴덩굴만 파종한 덮개작물은 1200평당 평균 812kg의 탄소인데, 호밀과 호밀/털갈퀴덩굴 덮개작물은 1200평당 각각 평균 1565kg, 1510kg이었다. 



덮개작물 질소 투입량


3년에 걸쳐 덮개작물 질소 투입량은 호밀만 파종한 처리법에서 가장 낮았다. 호밀에 털갈퀴덩굴을 추가하면 질소 투입량은 2배로 늘었다. 



이 도표는 2011년 모든 처리구에서 덮개작물을 종결시키기 직전에 측정한 덮개작물의 바이오매스를 보여준다(에러바는 표준 오류를 나타낸다.)


 

이 도표는 아홉 가지 처리법 각각에서 덮개작물의 평균 탄소 투입량이 어떠한지 보여준다. 여기의 수치는 2010년, 2011년, 2012년의 평균값이다. 


 

이 도표는 아홉 가지 처리법 각각에서 덮개작물의 평균 질소 투입량이 어떠한지 보여준다. 여기의 수치는 2010년, 2011년, 2012년의 평균값이다. 




토양의 질에 미치는 영향


연구진은 농사철 동안 모든 처리법에서 토양의 수분과 온도를 측정했다. 토양의 탄소와 질소의 백분율은 각 농사철 전후에 처리법마다 측정했다. 


토양 수분

토양 수분은 굴리고 베어낸 처리법과 비교하여 검정비닐 처리법에서 더 낮았다. 검정비닐 실험밭은 점적 관개를 통해 수분의 대부분을 공급받았기 때문에, 이 차이는 검정비닐 실험밭에서 관개의 양이나 빈도를 증가시킴으로써 쉽게 교정할 수 있었다. 


2011년 농사철을 평균했을 때, 검정비닐로 덮은 지역은 토양 수분이 25%였는데 반해 굴리고 베어낸 지역은 모두 수분이 28%였다. 2012년 평균은 검정비닐에서 20%, 베어낸 처리법에서는 23%, 굴린 처리법에서는 22%였다. 



이 도표는 토양 수분 자료를 통해 관찰된 경향을 보여준다. 검정비닐 덮개로 덮은 두둑은 굴리고 베어낸 두둑보다 일반적으로 수분이 더 적었다. 이런 양상은 여러 표본 추출 날짜에 관찰되었는데, 항상 그런 건 아니었다.
 





 

 



토양의 온도

검정비닐과 덮개작물 덮개 사이의 토양 온도 차이는 농사철 초기에 더 컸고, 말미에는 매우 적었다. 6월과 7월에 검정비닐로 덮은 실험밭은 베어내고 굴린 실험밭보다 토양 온도가 더 높았다. 이런 차이는 농사철이 끝날 무렵(9월, 10월)에는 미미했다. 검정비닐 처리법에서 최고 토양 온도는 6월에 굴리고 베어낸 처리법보다 3.2도씨 더 높았고, 7월에는 2.2도씨, 9월에는 1.1도씨, 10월에 0.3도씨 더 높았다. 2012년 6월과 7월에 최저 토양 온도는 검정비닐 처리법에서 약 1.1도씨 더 높았다. 덮개작물 유형에 따라 토양 온도에는 차이가 없었다. 덮개작물 덮개는 토양 온도를 알맞게 유지시키고 시간에 따른 변동을 줄여서 토마토 생산에 유리하다. 


이 표는 2012년 6월부터 10월까지 세 가지 다른 종결 처리법에서 월간 최고와 최저 토양 온도를 요약한 것이다. 




토양의 양분: 탄소와 질소 백분율
로데일 연구소의 현장 토양에서 탄소와 질소의 백분율에는 관측할 수 있는 변화가 없었다. 그러나 2012년의 호밀/털갈퀴덩굴 덮개작물에서 굴리고 베어낸 처리법 모두에서 농사철에 따라 탄소의 백분율이 증가했다. 굴린 호밀/털갈퀴덩굴에서 증가한 양은 베어낸 호밀/털갈퀴덩굴 처리법에서 증가한 양의 2배였다. 

협력 농장의 실험에서, 4개의 농장 가운데 하나에서는 검정비닐 처리법에서 토양의 탄소 백분율이 약간 증가(0.22%)한 반면, 다른 곳에서는 굴린 호밀/털갈퀴덩굴에서 0.31% 증가했다.



이 도표는 2012년 로데일 연구소 실험밭의 농사철 이전과 이후의 토양 탄소 백분율을 보여준다. 호밀이나 털갈퀴덩굴만 파종한 곳에선 탄소 백분율에 별다른 변화가 없었기 때문에, 여기에서는 호밀/털갈퀴덩굴 처리법만 표시되었다.  

 




풀 통제


풀의 바이오매스는 토마토를 심고 4주 뒤에 측정했다. 2010년과 2012년, 풀의 바이오매스 표본을 추출한 지역은 두둑과 고랑 모두를 포함한다. 2011년, 풀의 바이오매스 측정은 두둑에서만 이루어졌다. 이는 2011년 모든 처리법에서, 특히 검정비닐 처리법에서 풀의 바이오매스 값이 더 낮아지는 결과를 가져왔다. 


2010년, 호밀과 호밀/털갈퀴덩굴 체계의 덮개작물 덮개 처리법에서는 풀의 압박이 거의 없었다. 호밀/털갈퀴덩굴 처리법 가운데, 굴리고 베어낸 체계에서 풀의 압박은 검정비닐 호밀/털갈퀴덩굴 처리법의 평균 5%에 불과했다. 굴리고 베어낸 호밀은 검정비닐 호밀에서 풀 압박의 평균 13%를 나타냈다. 덮개작물의 유형 가운데 털갈퀴덩굴이 풀의 성장을 억제하는 데 가장 효과적이지 않았다.  


2011년에 했듯이 두둑에서만 풀의 바이오매스를 측정했을 때, 검정비닐 처리법에서 풀의 바이오매스가 매우 낮았다. 호밀/털갈퀴덩굴과 호밀 체계에서는 굴린 실험밭이 베어낸 실험밭보다 풀의 바이오매스가 더 낮았다.


2012년, 각 덮개작물의 유형에서 굴리고 베어낸 처리법은 검정비닐 처리법보다 풀의 바이오매스가 더 높았다. 털갈퀴덩굴과 호밀 덮개작물 체계에서는 약 2배, 털갈퀴덩굴/호밀 체계에서는 약 3배였다. 


3년에 걸쳐 모든 처리법에서 풀의 바이오매스에는 변동이 있었다. 하지만 검정비닐 체계는 굴리고 베어낸 체계보다 더 일관적이었다. 검정비닐은 2011년과 2012년에 풀을 더 효과적으로 억제했는데, 굴리고 베어낸 체계가 2010년에는 더 우수했다. 굴림은 베기보다 일반적으로 풀을 억제하는 데에 더 효과적이었다. 모든 해에 호밀/털갈퀴덩굴 덮개작물 체계가 털갈퀴덩굴과 호밀 체계와 일치하거나 그 이상의 효과를 나타냈다. 



이 도표는 2010년 모든 처리법에서 토마토를 심고 4주 뒤에 측정한 풀의 바이오매스를 보여준다. 이 수치들은 두둑에서 성장한 풀만 나타낸다(고랑 제외).

 


이 도표는 2011년 모든 처리법에서 토마토를 심고 4주 뒤에 측정한 풀의 바이오매스를 보여준다. 이 수치들은 두둑에서 성장한 풀만 나타낸다(고랑 제외).


이 도표는 2012년 모든 처리법에서 토마토를 심고 4주 뒤에 측정한 풀의 바이오매스를 보여준다. 이 수치들은 두둑과 고랑에서 성장한 풀을 나타낸다. 

 

 




수확량 


토마토는 필요에 따라 일주일에 1-2번 수확했다. 전체 수확량은 모든 연도에 측정하고, 상품 수확량은 2011년과 2012년에 측정했다. 2012년, 잎마름병으로 토마토 수확이 확 줄어서 모든 처리법에서 전체 수확량과 상품 수확량에 영향을 미쳤다.  


전체 수확량

2010년, 굴리고 베어낸 덮개작물 처리법 모두가 검정비닐 처리법의 전체 수확량보다 더 많았다. 덮개작물 유형은 토마토 수확량에 큰 영향을 미치지 않았다. 


2011년 전체 수확량은 검정비닐 체계의 2010년 수확량과 비슷했지만, 유기농 덮개 체계에서 크게 감소했다. 전체 수확량은 검정비닐 처리법에서 더 많았고, 검정비닐 처리법 안에서 덮개작물의 유형은 수확량에 큰 차이를 일으키지 않았다. 유기농 덮개 체계에서 호밀/털갈퀴덩굴 덮개작물을 활용한 곳이 털갈퀴덩굴과 호밀 체계와 비교해 각각 2-2.5배 수확량이 많았다. 2011년의 결과는 호밀과 털갈퀴덩굴을 조합할 때 토마토 수확량에 시너지 효과가 있음을 보여주었다.


2012년의 전체 수확량은 잎마름병으로 크게 감소하였는데, 2011년에 관찰된 결과와 유사한 양상을 보였다.



상품 수확량

2011년, 상품 수확량은 전체 수확량과 평행을 이루었고, 각 처리법에서 평균 20% 감소했다. 굴리고 베어낸 호밀/털갈퀴덩굴 처리법이 검정비닐 호밀/털갈퀴덩굴의 약 70%에 해당하는 상품 수확량을 올려 검정비닐 처리법과 가장 경합을 했다. 


2012년, 잎마름병 때문에 전체 수확량의 23%만 상품성이 있었다. 굴리고 베어낸 털갈퀴덩굴 처리법이 가장 낮은 상품 수확량을 올렸고, 다른 전체 처리법 사이의 상품 수확량에는 큰 차이가 없었다. 


이 자료는 여러 덮개 유형이 토마토 수확량에 미치는 영향은 해마다 다를 수 있음을 시사한다. 덮개의 성능에 대한 이러한 연간 변화와 관련된 요소를 더 잘 이해하기 위해서는 장기간의 연구가 필요할 것이다.  


 

이 도표들은 2010년과 2011년의 전체 토마토 수확량을 보여준다. 2010년에는 덮개작물 덮개가 검정비닐 처리법보다 우수한 결과를 나타냈고, 2011년에는 그 양상이 바뀌었다. 





 


폐기물 생산


실험한 모든 체계의 모든 처리법에서 관개용 비닐호스를 사용했기 때문에 비닐 폐기물이 조금 생산되었다. 그러나 밭에서 꺼낸 비닐의 양은 검정비닐 처리법에서 1200평당 비닐 덮개 41.5kg에 비닐호스 14kg을 더해 4배나 많았다. 



수익성


비용

처리법에 따라 비용이 변동되었지만(가변 비용), 나머지는 모든 처리법에서 동일했다(고정 비용). 가변 비용에는 덮개작물 씨앗, 비료, 비닐 덮개, 장비의 이동, 비닐의 처분, 제초 인건비 등이 포함되었다. 고정 비용은 1200평에 총 9,668.26달러였는데, 여기에는 비닐호스, 지주, 끈, 토마토 씨앗, 상토, 포트에 줄을 띄우고 수확하고 심고 분류하는 인건비가 포함되었다. 


각 체계의 총 비용에서 가장 두드러진 차이는 덮개작물의 유형에 따라 발생했다. 털갈퀴덩굴 덮개작물 체계는 질소비료가 필요하지 않아 일반적으로 연간 비용이 가장 낮았다. 호밀 체계는 질소비료가 가장 많이 필요하여 보통 연간 비용이 제일 높았다. 검정비닐 처리법은 굴리고 베어내는 체계보다 실행하는 데에 일반적으로 비용이 많이 들었지만(평균 135달러 차이), 이에 대한 자료에 변동이 너무 많았다는 게 중요하다. 



수익

이 계산에서 토마토의 가격은 동부의 여러 대형 유기농 도매상의 보고서를 기반으로 한다. 매년 활용된 가격은 계절에 따른 토마토 가격의 평균이다. 연간 수익은 각 체계의 상품 수확량에 그해의 유기농 토마토 가격을 곱하여 계산했다. 상품 수확량은 실험의 첫해에는 측정하지 않았기 때문에, 2011년에 관찰한 바와 같이 20%의 도태율을 가정하여 추측에 근거해 2010년의 상품 수확량을 계산했다.


각 체계의 수익은 상품 수확량과 직접적으로 연관된다. 따라서 매출액은 체계와 해에 따라 크게 달라졌다. 각 처리법에서 가장 수익이 높은 건 2010년에, 가장 낮은 건 잎마름병 때문에 2012년에 관찰되었다.   



이윤

각 체계의 수익성은 해에 따라 다양했다. 모든 체계에서 가장 수익성이 높은 해는 2010년이었다. 굴리고 베어낸 체계는 검정비닐보다 훨씬 더 수익성이 좋아, 1200평당 평균 2만3천 달러의 수익을 올렸다. 베어낸 체계는 2010년에 일관적으로 가장 수익성이 좋았다. 유기농 덮개 체계에서는 털갈퀴덩굴과 호밀/털갈퀴덩굴 처리법이 호밀 처리법보다 연간 수익이 더 높았다.


2011년, 검정비닐 처리법은 2010년과 비슷한 수확량을 올렸지만 굴리고 베어낸 체계는 수익성이 훨씬 더 낮았다.검정비닐 처리법은 2011년에 가장 수익성 좋은 처리법이었다. 유기농 덮개 가운데 호밀/털갈퀴덩굴 체계가 가장 수익성이 좋고, 계절에 따라 순 손실이 일어나 호밀이 가장 낮았다.  


모든 체계는 2012년 잎마름병으로 순 손실이 발생했다. 이 해에는 수익이 관찰되지 않았다. 


해마다 수익성에 많은 변동이 일어났기 때문에 각 체계의 수익성을 고려하려면 3년 모두를 살펴보는 게 도움이 된다. 2010-2012년 동안을 평균으로 내면, 가장 수익성 높은 건 굴린 호밀/털갈퀴덩굴과 베어낸 호밀/털갈퀴덩굴 체계에서 달성되었다. (도표는 아래를 참조.) 


 

2010-2012년 평균 연간 비용, 수익, 그리고 1200평당 이윤

2010년에는 상품 수확량을 측정하지 않았기 때문에, 그해의 상품 수확량은 2011년에 관찰된 것과 같이 20% 도태율을 활용해 계산했다. 




더 많은 덮개작물 덮개 연구


이 연구가 로데일 연구소에서 진행되는 동안, 다른 곳에서도 유기농과 관행농 덮개작물 덮개 체계를 더 깊이 살펴보고 있었다. 몇 가지를 소개하면 아래와 같다.

 

털갈퀴덩굴 덮개작물에서 경운을 줄인 유기농 옥수수 생산Teasdale, J.R., S.B. Mirsky, J.T. Spargo, M.A. Cavigelli, and J.E. Maul 2012. Reduced-tillage organic corn production in a hairy vetch cover crop. Agronomy Journal 104:621-628

Teasdale 들은 풀씨가 저장된 양이 적을 때 굴려 죽이는 털갈퀴덩굴 덮개작물의 유기농 옥수수가 디스크쟁기로 죽인 털갈퀴덩굴의 옥수수보다 훨씬 수확량이 많다는 사실을 밝혔다. 


가을과 봄에 파종한 덮개작물 덮개가 호박의 수확량과 열매의 청결, 푸사리움 열매 썩음병 발달에 미치는 영향Wyenandt, C.A., R.M. Riedel, L.h. Rhodes, M.A. Bennett, and S.G.P. Nameth. 2011. hortTechnology 21:343-354

봄에 종결시킨 덮개작물 덮개에서 재배한 호박은 맨흙에서 생산한 호박보다 숫자와 무게에서 약간 더 높았다. 또한 이 실험밭의 호박들은 FFR(Fusarium solani f. sp. Cucurbitae race 1)에 덜 감염되었다. .


덮개작물 덮개 체계의 풀 관리에 대한 기계론적 접근Wells, M.S. 2013. (Doctoral dissertation). Retrieved from http://www.lib.ncsu.edu/ resolver/1840.16/9082

이 연구의 여러 발견 가운데 하나는 옥수수와 대두의 생산에서 1200평당 약 4082kg의 바이오매스가 나오는 굴린 호밀이 풀을 훌륭하게 통제한다는 것이다. 






결과 요약


덮개작물의 바이오매스: 검정비닐 덮개와 관련하여 초기에 종결시키면, 이 실험밭에서는 굴리고 베어낸 실험밭과 비교하여 더 적은 덮개작물의 바이오매스가 나온다. 호밀과 호밀/털갈퀴덩굴 덮개작물은 털갈퀴덩굴 덮개작물의 바이오매스보다 약 2배가 많다. 


덮개작물의 양분 투입: 호밀/털갈퀴덩굴은 양분 투입이란 측면에서 뛰어난 덮개작물이었다. 1200평당 가장 많은 양의 질소를 제공하며, 1200평당 탄소의 양도 최고치에 매우 근접한다. 한편 종결 방법은 토양에 투입되는 질소에 큰 영향을 미치지 않으며, 탄소 투입은 굴리고 베어낸 처리법에서 더 높았다. 


토양 수분: 검정비닐 처리법이 일반적으로 유기농 덮개 처리법보다 수분이 더 적었다. 


토양 온도: 검정비닐 처리법에서 최대 토양 온도는 6월에는 굴리고 베어낸 처리법보다 평균 3.2도씨, 7월에는 2.2도씨, 9월에는 1.1도씨, 10월에는 0.3도씨 더 높았다. 2012년 최소 토양 온도는 검정비닐 처리법에서 6월과 7월에 약 1.1도씨 더 높았다. 덮개작물의 유형에 따른 토양 온도의 차이는 없었다.  

토양의 양분 함량: 굴린 호밀/털갈퀴덩굴 처리법에서 토양의 탄소 백분율이 조금 증가했다. 모든 처리법에서 토양의 탄소와 질소의 백분율에는 큰 변화가 없었다. 


풀 억제: 3년 동안 모든 처리법에서 풀의 바이오매스에 변동이 있었지만, 검정비닐 체계는 굴리고 베어낸 것보다 더 일관적이었다. 검정비닐이 2011년과 2012년에 더 효과적으로 풀을 억제했는데, 2010년에는 굴리고 베어낸 체계가 검정비닐보다 뛰어났다. 굴리기는 일반적으로 베기보다 풀을 더 효과적으로 억제했다. 모든 해에 호밀/털갈퀴덩굴 덮개작물 체계가 털갈퀴덩굴과 호밀 체계와 비슷하거나 더 뛰어났다. 


전체 수확량과 상품 수확량: 토마토 수확량에 뿌리덮개의 유형이 미치는 영향은 해마다 달랐다. 2010년에는 덮개작물 덮개 체계가 검정비닐 체계보다 수확량이 더 높았지만, 2011년과 2012년에는 그 반대였다. 덮개작물 덮개 체계(털갈퀴덩굴, 호밀, 호밀/털갈퀴덩굴)에서는 굴리고 베어낸 호밀/털갈퀴덩굴 처리법이 가장 수확량이 많았다.


폐기물 생산: 검정비닐 덮개를 사용하면 비닐 폐기물의 양이 4배 정도 늘어났다. 덮개작물 덮개 처리법은 관개호스 때문에 1200평당 약 13kg의 비닐 폐기물이 발생했다. 검정비닐 처리법은 관개호스와 비닐 덮개 때문에 1200평당 약 55kg의 비닐 폐기물이 발생했다. 


수익성: 유기농 덮개 체계의 연간 수익성은 검정비닐 체계의 그것에 비교해 훨씬 변동이 많았다. 그러나 2010-2012년에 걸쳐 평균을 했을 때, 가장 높은 수익성은 굴린 호밀/털갈퀴덩굴과 베어낸 호밀/털갈퀴덩굴 체계에서 달성되었다. 






 

 

협력 농민의 사례 연구

 

로데일 연구소에서 실행한 실험 이외에도 펜실베니아와 뉴저지 주에 있는 4명의 농민들이 2011년과 2012년에 자신의 농장에서 덮개작물 덮개를 실험했다. 각자 로데일의 실험에서 행한 굴린 호밀/털갈퀴덩굴 체계를 그들이 풀을 억제하는 보편적 방법과 비교했다. 한 농민은 자신의 실험밭에 새롭게 설계된 휴립 롤러를 활용해 두둑을 지어 재배했다. 그들의 현장 연구에 활용된 실험 작물에는 토마토, 겨울과 여름 호박, 고추, 양배추가 포함된다.


2011년, 협력 농민들은 연구진이 덮개작물 덮개로 얼마나 풀이 억제되는지 정확하게 평가할 수 있게 그들의 굴린 덮개작물 처리밭에 풀을 매는 걸 허용하지 않았다. 2012년, 농민들은 토마토를 심고 4주 동안 수행한 풀 억제 평가한 이후에 굴린 실험밭의 풀을 맬 수 있었다. 이러한 이유로, 굴린 호밀/털갈퀴덩굴 처리법의 수확량은 2011년보다 2012년에 전반적으로 더 좋아졌다. 두 해 모두, 농민들은 자신의 관리 체계에서 일반적으로 사용하는 풀 통제법을 사용하도록 허용되었다.




사례 연구 #1: Genesis Farm의 지역사회 지원 텃밭


농장 일괄

위치: Blairstown, NJ
농민: Mike Baki
농사 경력: 22년
전체 면적: 9만 
경작 면적: 6만 평
토양 유형: 각편상석력질의 미사질 양토(Nassau-Manlius complex)

작물: 다양한 채소 생산, 과일, 건초

가축: 산란계

상품판매: 지역사회 지원 농업 회원 300명 


미국에서 초기에 지역사회 지원 농업을 시작한 농장의 하나. 농민은 왼쪽부터 Smadar English, Mike Baki, Judy Vonhandorf 씨.


Genesis Farm의 실험밭에서, Mike Baki 씨는 자신의 표준인 검정비닐 체계 바로 옆에 로데일의 굴리는 호밀/털갈퀴덩굴 체계를 실험했다. 그의 표준 체계에서는 두둑에 생분해 비닐을, 고랑에는 짚 덮개를 사용한다. 인력 제초는 필요할 때 표준 처리법으로 실행했다. 2011년 Mike 씨는 애호박, 토마토, 수박을 재배하고, 2012년에는 수박을 고추로 대체했다.  


2011년, 굴린 호밀/털갈퀴덩굴 밭은 검정비닐 밭보다 풀의 압박이 더 심했다. 이는 모든 작물의 수확량에 영향을 주었지만 정도는 달랐다. 굴린 호밀/털갈퀴덩굴의 수박과 애호박은 Mike 씨의 표준 검정비닐 처리법에 비교해 2배 정도 수확이 적었다. 그러나 토마토는 두 체계에서 비슷하여, 검정비닐 밭에서 생산된 양의 약 75%가 굴린 호밀/털갈퀴덩굴 밭에서 나왔다.  


2012년, 농민들에게 4주 뒤에 김매기를 허용했을 때에는 두 처리법에서 풀의 압박은 큰 차이가 없었다. 고추와 애호박 수확량은 굴린 호밀/털갈퀴덩굴에서 뚜렷하게 적었다. 토마토 수확량은 두 체계에서 거의 비슷했다. 굴린 호밀/털갈퀴덩굴에서 1200평당 7231kg이고, 검정비닐 처리법에서 1200평당 7468kg이었다. 


굴린 호밀/털갈퀴덩굴 처리법의 비용은 91.4m당 202.50달러로, 검정비닐 처리법의 506.80달러의 절반에도 미치지 못했다. 2012년의 토마토 수확량이 꾸준하게 계속된다면, 위의 처리법 비용은 상당한 절감으로 이어질 것이다. Mike 씨는 굴린 호밀/털갈퀴덩굴 체계를 계속 실험하며, Genesis Farm에서 실제로 활용할 수 있는 효과적인 방법을 찾길 바라고 있다. 


Genesis Farm의 실험밭: 굴린 호밀/털갈퀴덩굴 처리법이 왼쪽, 검정비닐이 오른쪽이다. 두 처리법 사이의 고랑은 Mike Baki 씨의 표준 풀 관리 체계의 일부인 짚으로 덮었다.
 

 

  



사례 연구#2: Swallow Hill Farm 


농장 일괄

위치: Cochranville, PA 

농부: Douglas와 Elizabeth Randolph 씨
농사 경력: 20년

전체 면적: 6만 평
경작 면적: 3만6000평
토양 유형: Glenelg 미사질양토
작물: 고추, 토마토, 십자화과 채소, 호박, 건초, 호밀짚, 블루베리, 식용 대황, 아스파라거스

가축: 없음 

상품판매: 농장 판매와 텃밭 센터와 식당에 도매



Douglas Randolph 씨가 농장에서 덮개작물로 호밀과 붉은토끼풀을 심고 있다. 
 



Douglas와 Elizabeth Randolph 씨가 이 연구에 참여했을 때, 덮개작물 덮기는 이미 그들의 표준적인 작부체계의 일부였다. 그들이 개발한 체계는 자주개자리 건초 이후 호밀을 조합하거나 호밀과 붉은토끼풀을 활용하고, 컬티패커(cultipacker)를 이용해 종결시킨 뒤 살아 남은 덮개작물을 죽이고자 글리포세이트를 살포했다. 


Randolphs 씨는 로데일의 굴린 호밀/털갈퀴덩굴 체계와 자신의 변형 기술을 비교했다. 호밀과 붉은토끼풀을 컬티패커로 갈아버리는 대신 굴리고, 가끔 발아 후 제초제를 살포했다. 그들은 무경운 파종기로 실험 작물인 버터호두호박을 심었다. 2011년과 2012년, 호밀과 붉은토끼풀 체계에서 호박 수확량은 27% 증가했다. Randolphs 씨에 의하면 붉은토끼풀은 펜실베니아 남부(평균 최저 기온 -23도씨에서 -17.8도씨)에서는 뿌리를 빽빽하게 내리는데, 추운 겨울에는 죽기 때문에 더 북쪽의 농민에게는 적합하지 않을 수 있다고 한다. 그럼에도 불구하고 Randolphs 씨는 적절한 기후에서 붉은토끼풀을 재배할 경우, 그것이 굴리는 덮개작물 체계에서 털갈퀴덩굴의 실용적인 대안이란 것을 입증했다. 


Douglas와 Elizabeth 씨는 두 가지 서로 다른 덮개작물의 조합이 비슷하게 풀을 억제한다는 것을 관찰했다. 컬티패커를 활용하여 덮개작물을 끝내는 그들의 예전 방식과 비교하여, 롤러크림퍼는 더 효과적으로 줄기를 구불구불하게 만들고 덮개작물이 다시 자라는 걸 방지했다. 그 결과, 롤러크림퍼를 사용했을 때 발아 후 제초제를 살포할 필요가 줄었다. 


이 연구에 참여한 이후 Randolphs 씨는 호밀이나 호밀과 붉은토끼풀 덮개작물을 종결시키기 위해 컬티패커 대신 롤러크림퍼를 활용하게 되었고, 농장에서 사용하는 제초제의 양이 40-50% 감소했다.  



Randolphs 씨 농장의 굴린 호밀과 붉은토끼풀에서 재배하는 버터호두호박
 

 




사례 연구 #3: Meadow View Farm

 

농장 일괄

위치: Bowers, PA
농부: James와 Alma Weaver 씨 및 아들들 

농사 경력: 38년
전체 면적: 9만3600평
경작 면적: 8만4000평
토양 유형: Clarksburg 미사질양토
작물: 토종 고추와 토마토, 호박, 단옥수수, 사료용 옥수수, 대두, 밀
가축: 양, 산란계

상품판매: 농장 판매대, 도매, 해마다 고추 축제


Meadow View Farm의 James Weaver 씨는 호밀/털갈퀴덩굴 덮개작물을 끝내기 위해 두둑 짓는 롤러크림퍼를 사용한다. 

 


James Weaver 씨는 똑같은 땅에서 38년 동안 농사를 지었다. 그는 지역에서 잘 알려져 있으며, 여러 가지 토종 품종만이 아니라 신품종 토마토와 자신이 육종한 유령고추를 재배한다.  


로데일에서 이 연구에 참여할지에 관하여 James 씨에게 물었을 때, 그는 약 1만8000평에 해마다 검정비닐을 덮어서 농산물을 생산하고 있었다. 그는 자신의 표준 검정비닐 관리법 옆에 로데일의 굴린 호밀/털갈퀴덩굴을 실험했다.James 씨의 표준 체계는 인력 제초와 식초의 살포(식물의 끝부분이 시들게 함) 및 가끔 억센 여러해살이 풀에 농약을 치며, 검정비닐 덮개를 사용한다. James 씨는 2011년에는 실험밭에 두 종류의 토마토를, 2012년에는 양배추를 재배했다.   


James 씨는 첫해에 활용한 굴린 호밀/털갈퀴덩굴 체계에서 두 종류의 토마토 수확량이 모두 형편없었다고 보고한다. 그는 이것이 연구의 설계에서 굴린 실험밭의 제초를 허용하지 않았기 때문이라고 생각한다. 실험 둘째 해에 4주 뒤 제초를 허용했을 때, James 씨의 토마토 수확량은 굴린 처리법에서 1200평당 7098kg을 올렸고, 검정비닐 처리법에서는 1200평당 9364kg을 올렸다. 검정비닐 실험밭이 전체 수확량에서 32% 더 나왔지만, James 씨는 굴린 호밀/털갈퀴덩굴의 토마토 품질이 열과 현상 때문에 검정비닐의 그것보다 훨씬 좋았다고 보고한다. 그 결과, 각 처리법의 실제 상품 수확량과 수익성은 매우 비슷했다.  


James 씨는 두 처리법 모두 양배추는 흉년이었다고 하는데, 검정비닐 실험밭의 수확량이 약 65% 더 높았다.


그는 로데일의 덮개작물 덮개 실험에 참여한 이후 호박밭의 검정비닐 덮개를 굴린 호밀로 대체하고 검정비닐의 총사용량을 거의 절반으로 줄였다. 그는 자신의 농사 가운데 더 많은 면적을 덮개작물 덮개 체계로 바꾸고 싶어한다. 안타깝게도 다음해를 위해 제때 덮개작물을 심을 공간이 없다. 호밀과 털갈퀴덩굴을 심어야 할 9월인데 그의 작물이 아직도 대부분 재배되고 있다. 그럼에도 불구하고 그는 그걸 적용할 방법을 찾을 수 있기를 바라고 있다. James 씨는“특히 내가 늙어갈수록 비닐을 제거하고 폐기하는 일을 하지 않아도 되는 게 좋다”고 이야기한다.






사례 연구 #4: Quiet Creek Farm

 

농장 일괄

위치: Kutztown, PA
농부: John과 Aimee Good 씨 

농사 경력: 12년
전체 면적: 9600평
경작 면적: 9600평
토양 유형: Clarksburg 미사질양토

작물: 다양한 채소 농사

가축: 없음

상품 판매: 지역사회 지원 농업의 농장 나눔, 도매



지난 8년 동안 John과 Aimee Good  씨는 로데일 연구소에서 임대한 토지에서 유기농업을 실행했다. 



John과 Aimee Good 씨의 농장은 로데일 연구소에서 임대한 땅이다. 그들은 로데일의 굴린 호밀/털갈퀴덩굴 옆에서 검정비닐 없이 경운을 하는 그들의 유기농 풀 관리법을 실험했다. 그들은 실험 작물로 버터호두호박을 선택하고, 실험 기간에는 제초를 전혀 하지 않았다. 


Weed pressure in John과 Aimee 씨의 실험밭에서 2011-2012년 풀의 압박은 다채로웠다. 첫해에 풀의 바이오매스는 굴린 호밀/털갈퀴덩굴 처리법에서 약 4배 더 많았다. 그러나 2012년 이들의 표준 노지 처리법에서는 굴린 호밀/털갈퀴덩굴보다 풀의 압박이 2배 더 심했다. 두 체계의 평균 수확량은 매우 비슷했다. 굴린 호밀/털갈퀴덩굴은 1200평당 6124kg이었던 한편, 그들의 표준 관리법에서는 1200평당 6463kg으로서 약 5% 차이가 났다. 


John 씨는 굴린 호밀/털갈퀴덩굴 체계를 실험하고 있으며 그들의 농장에 적용할 방법을 찾길 바라고 있다. 그들이 여러 종류의 채소를 재배한다는 점이 걸림돌이 되긴 한다.  다양한 작물의 시기에 맞추는 일이 복잡할 수 있으며, 씨앗의 크기가 작은 채소를 덮개작물 덮개에 곧뿌림하는 것이 어려워질 수 있다. 


그들은 채소밭 가운데 약 1200평 정도는 계속 검정비닐을 사용한다. 그러나 이 연구에 참여한 이후 John과 Aimee 씨는 그 체계에 덮개작물을 도입하기 시작했다.  그들은 현재 토양에 유기물을 더하고 비닐로 인해 유실량이 증가하며 발생하는 침식을 줄이기 위해 검정비닐 두둑 사이의 고랑에 독보리와 토끼풀을 심었다. 또한 John 씨는 이 기술 덕에 특히 땅이 축축할 때 두둑 사이에서 작업하기에 훨씬 더 편한 공간이 만들어졌다고 보고한다. 그들은 잔디깎이로 고랑의 덮개작물을 관리한다. 







유기농 무경운 체계를 시행하기





시작하기 


여기에서는 단일한 씨앗을 심지 않으며 어떻게 시작할지에 대해 몇 가지 제안을 하려고 한다. 다음의 아이디어는 새로운 체계에 적응하는 위험을 관리하면서 유기농 무경운 농민으로 성공하려는 여러분에게 도움이 될 것이다. 


독서 및 학습

여러분의 지역에서 잘 자라는 덮개작물에 관하여 최대한 많이 찾으라. 이에는 다른 유기농과 무경운 농민과 이야기를 나누고, 지역의 기술센터에서 이용할 수 있는 자료를 활용하고, 참고 안내서를 참조하는 것이 포함된다.  


지역의 씨앗 탐색

지역에 적응된 덮개작물 씨앗은 이미 여러분의 지역에 적응한 작물이라 여러분에게 유리할 것이다. 겨울에 얼어 죽을 가능성이 낮아지고, 농장에서 더 잘 자랄 수 있다. 지역의 씨앗을 찾는 데 시간이 좀 걸릴 수 있으니 일찍 시작해야 한다. 이는 양이 제한될 수 있기에 유기농 종자의 경우 특히 중요하다. 


실험밭

유기농 무경운의 가장 큰 위험은 새로운 관리 체계와 완전히 새로운 기술로 전환하는 일일 수 있다. 처음 몇 해 동안에는 학습 곡선이 매우 가파를 수 있다. 여러분의 농장에서 작은 실험 구역이나 실험밭을 설정해 시작하는 것도 좋은 생각이다.  


농장 평가

토양의 유형, 심으려는 작물, 보유하고 있는 농기구 및 자원, 새로운 작부체계를 탐구해야 할 시간을 살펴보라. 농장의 변화와 마찬가지로, 지식은 힘이며 새로운 덮개작물 관리 도구가 어떻게 운영될지 이해하는 일이 성공의 지름길이다.  



무경운 경고문


유기농 무경운은 다양한 상황에서 활용할 수 있지만, 여기에는 몇 가지 유의해야 할 사항이 있다. 


질소 정체현상

유기농 무경운은 체계의 질소 순환 방식을 변화시킨다. 분해 과정에서 식물이 일시적으로 질소에 쉽게 접근하지 못하게 된다. 이는 특히 매우 건조한 토양에서 작업할 경우 그러하다. 덮개가 곡류라면 농사철 초기에 질소 정체현상이 나타날 수 있다. 성숙한 덮개작물, 특히 곡류를 갈아엎고자 했을 때에도 질소 정체현상이 나타날 수 있다. 이러한 부작용을 최소화하기 위하여 할 수 있는 몇 가지 방법이 있다. 콩과식물을 덮개작물이나 그 일부로 섞어서 활용하거나, 목초의 덮개작물에 콩과의 환금작물을 심는 것(호밀에 대두)만으로도 유기물 형태로 질소를 보충할 수 있다. 


관개용수 활용

일부 덮개작물, 특히 호밀 같은 경우에는 많은 양의 물이 필요하다. 건조한 곳에서 농사를 짓거나 봄의 눈 녹은 물이나 빗물에 의존하는 경우, 덮개작물이 이용할 수 있는 물의 대부분을 차지하여 환금작물과 경쟁할 수 있으며뒷그루에 충분하지 않은 양의 물을 남길 수 있다. 좋은 소식은 시간이 지남에 따라 무경운 농법이 토양의 유기물 함량을 높임으로써 토양의 건강 상태를 개선하고, 그로 인해 수자원 보존에 큰 도움이 될 수 있다는 사실이다.


불충분한 바이오매스

덮개작물이 듬성듬성 자라면 유기농 무경운 체계가 제대로 작동하지 않는다. 어떤 이유에서든 덮개작물이 제대로 자리를 잡지 못하면, 농부는 덮개작물을 현실적으로 평가해야 한다. 그런 다음 계획처럼 계속하기로 결정하든지,갈아엎는 걸 선택하거나 풀을 통제하기 위해 제초제를 살포해야 한다. 


너무 일찍 굴림

흔히 하는 실수 가운데 하나는 너무 일찍 굴려서 롤러크림퍼로 빈약할 때 죽이게 되는 일이다. 성숙하기 전에 덮개작물이 성숙하기 전에 그냥 굴려 버리는 유혹에 빠지기 쉽다. 특히 나는 덮개작물을 기다리는데 이웃들이 파종준비를 마칠 때 그렇다. 완전히 죽지 않은 덮개작물은 양분과 수분을 빼앗아 환금작물과 경쟁할 수 있다. 


환금작물을 파종하는 문제

파종기가 제대로 작동하는지 확인하는 몇 가지 실험이 필요할 수 있다. 일반적인 어려움은 다음과 같다. 파종기가 덮개작물을 자르지 못한다. 파종기가 씨앗을 흙에 적당히 넣지 못하거나 깊이 조절 바퀴가 들려 있어서, 씨앗이 골에 자리를 잡기 어렵다. 


늦게 심음

덮개작물을 효과적으로 죽이기 위해 봄에 성숙할 때까지 기다려야 하기 때문에, 평소 환금작물을 파종하는 시기보다 더 늦춰야 할 수도 있다. 더 일찍 성숙하는 덮개작물 품종이나 여러분의 특정 지역에 더 잘 어울리는 품종을원할 수 있다. 당신이 북부 지역에 산다면, 봄에 파종할 날이 며칠 안 될 수도 있다. 살고 있는 지역에 따라 북부의 농민에게는 여름에 덮개작물을 재배하는 일이 더 나을 수도 있다. 당신의 농사에 필요한 구체적 특성을 고려하라. 그런 다음 이러한 특성을 나타내는 품종을 찾으라.


차가워지는 토양

덮개작물은 토양에 그늘을 드리워 봄철의 토양을 더 차갑게 만든다. 토마토, 가지, 고추 같이 더운 기온을 좋아하는 작물은 시작이 느려질 수 있다. 하지만 토양의 온도가 연중 일정하게 평탄해지기에 이점이 될 수도 있다. 한번굴리고 쭈그러뜨리면, 덮개작물은 이후 덥고 건조한 농사철에 더 시원하고 촉촉한 토양 상태를 유지하도록 돕는다. 




로데일 연구소의 굴린 털갈퀴덩굴에서 재배하는 유기농 무경운 옥수수
 

 

 


원문 

비닐을 벗기자.pdf


비닐을 벗기자.pdf
1.51MB
728x90

'농담 > 농법' 카테고리의 다른 글

논밭에 꽃을 심자  (0) 2018.02.05
아쿠아포닉스?  (0) 2018.02.05
영국의 혼농임업 사례  (0) 2018.01.11
미국의 벼농사  (0) 2017.12.25
벼와 함께 생물다양성을 높이는 인도의 혼농임업  (0) 2017.12.22
728x90
감자가 인류의 평화에 이바지한 공로를 봅시다.

유럽 사회에서는 16세기부터 본격적으로 감자가 도입되어 퍼졌다고 하지요. 처음 발견한 건 콜럼버스 때부터였지만, 이를 본 당시 유럽인들은 땅속에서 캐는 것이기도 하고 다른 대륙에서 건너온 것이라 '악마의 열매라고 하며 꺼렸답니다. 그래서 처음에는 관상용으로나 조금씩 심다가 먹어보기도 하면서 거부감을 줄여 나갔겠지요? 아무튼 그렇게 200년 가까이 흘러 대중화되었다고 합니다.

이 감자는 농사지어 보신 분은 잘 아시겠지만, 생산성이 높아요. 하나 심으면 몇 개가 주렁주렁 달려요. 또 다량의 탄수화물을 공급하는 좋은 먹을거리이죠. 게다가 다른 작물에 비해 상대적으로 저온에서도, 물과 거름이 적어도 잘 자랍니다. 농사짓기 참 편해요. 그래서 이런 감자 덕에 당시 토지 가격도 하락하고, 땅을 놓고 싸울 일이 적어졌다는 분석입니다. 재밌네요.


728x90
728x90
공식적으로 유전자변형 작물의 재배가 금지된 국가.

아프리카 대륙; 2개국

알제리(2000년부터)
마다가스카르(2002년부터)


아시아 대륙; 4개국

터키
키르기스스탄
부탄
사우디아라비아


아메리카 대륙; 4개국

벨리즈
페루
에콰도르
베네수엘라


유럽 대륙; 28개국

스코틀랜드
웨일즈
북아일랜드
독일
프랑스
네덜란드
몰타
키프로스
그리스
불가리아
러시아
세르비아
크로아티아
이탈리아
덴마크
헝가리
몰도바
라트비아
리투아니아
오스트리아
폴란드
슬로베니아
아제르바이잔
보스니아-헤르체고비나
룩세부르크
우크라이나
노르웨이
스위스


728x90

+ Recent posts