728x90

http://www.agriculturesnetwork.org/resources/pdfs/learning-agricultures-module-2-full


This module discusses different aspects of soil and water systems, and reflects on soil and water sustainability issues for small-scale farming in particular. Certain principles about soil and water systems are common to all farms – such as how nutrient cycles and soil food webs work. Similarly, how water enters the farm and the dynamics of soil moisture follow the same principles everywhere. At the same time, there is a huge variety of soil types and climates around the world. A farmer who lives in a floodplain in Bangladesh needs a different type of management option to one living in dry regions like the Sahel or in the Middle East. While we cannot represent all different situations, this module covers a variety of cases of small-scale farming in different regions for students to develop insights into soil and water sustainability.

Module 2 addresses the question of how soil and water management practices can be improved on farms. How can soil and water management be improved in the wider context of farmers? What kinds of policies can support more sustainable management of land, soil and water?

Through a variety of educational resources, including games and exercises, articles, videos, photos and ideas for field visits, educators can inspire their students to reflect more critically about soil and water sustainability issues around the world as well as in their own region.

learning-module2-preview.pdf
0.6MB
728x90

'곳간 > 문서자료' 카테고리의 다른 글

농업을 배우자 4 -가축  (0) 2013.01.30
농업을 배우자 3 -작부체계  (0) 2013.01.30
농업을 배우자 1 -지속가능한 소농  (0) 2013.01.30
먹노린재  (0) 2013.01.27
일제강점기 쌀 생산량과 인구  (0) 2013.01.25
728x90

 

Earth는 흙이다.

흙은 땅이고, 그 땅이 곧 地球다.

지구가 바로 '둥근 땅'이란 뜻이다.

역시 근본은 흙이다.

모든 생명을 품어 키우는 흙.

농사의 성패는 '흙'에 달려 있다.

얼마나 건강하고 좋은 흙을 만드냐가 관건이다.

 

농사를 짓는다는 건 씨앗을 심어 작물을 돌보고 수확하는 데에만 국한되는 행위가 아니다.

농사를 짓는다는 건 흙을 돌보고 씨앗을 갈무리하고 땀흘려 일하는 게 우선이다.

그리고 나서 수확은 주어지는 만큼, 자연이 허락하는 만큼 받을 뿐이다.

 

헌데 그렇게 농사지어서는 굶지는 않아도 돈은 잘 벌기 어렵다는 것이 함정 아닌 함정이다. 그래도 좋아.

728x90

'농담 > 텃밭농사' 카테고리의 다른 글

설성 유기농 쌀막걸리  (0) 2013.01.29
텃밭 의자를 소개합니다.  (0) 2013.01.21
겨울을 이기는 법  (0) 2012.12.24
토종 아욱(붉은줄기)  (0) 2012.11.15
게걸무  (0) 2012.11.15
728x90


728x90

'곳간 > 영상자료' 카테고리의 다른 글

라틴아메리카의 '두레' 조직  (0) 2013.01.18
중국의 옥상텃밭 이야기  (0) 2013.01.17
흙; 감추어진 자원  (0) 2012.12.07
유기농업을 위한 풀 관리법  (0) 2012.12.02
골타기와 덮개작물  (0) 2012.12.02
728x90

eOrganic authors:

Michelle Wander, University of Illinois

Nick Andrews, Oregon State University

John McQueen, Oregon State University

This article provides an overview of key concepts in organic fertility management, a review of essential macro and micronutrients, and a listing of nutrient amendments approved for use in organic farming systems. It summarizes strategies used to build and manage fertility on organic farms and provides tips on soil testing and use of nutrient budgets.

Introduction: Soils as the Foundation of Organic Farming
Supplying and Managing Nutrients
Methods Used to Build Soils
Soil Tests and Nutrient Budgets
References and Citations
Further Reading

Introduction: Soils as the Foundation of Organic Farming

Soil health is the foundation of organic farming systems. Fertile soil provides essential nutrients to plants, while supporting a diverse and active biotic community that helps the soil resist environmental degradation. Organic producers face unique challenges in managing soil productivity. Current guidelines on nutrient management for organic farmers are fairly general in nature. Organic farmers rely on intuition and observation, advice from vendors, conventional soil tests, and their own experience to make decisions about the quantity and types of soil amendments to apply. As a result, there is tremendous variability in both the quantities of nutrients applied and the resulting soil fertility status on organically managed farms. Organic farmers seek to "build the soil" or enhance its inherent fertility by using crop rotations, animal and green manures, and cover crops. Crop rotation and tillage practices must provide an appropriate seedbed and pest control while minimizing erosion. Nutrient stocks are maintained through use of natural (non-synthetic) substances and approved synthetic substances listed on the National List of Allowed and Prohibited Substances. This list includes a few approved synthetic fertility inputs, such as elemental sulfur, aquatic plant extracts, liquid fish products, potassium chloride, and sodium nitrate. Many substances on the National List have restrictions, or annotations, on their use, source, or rate of application. Organic farmers are advised to check with their certifying agent before purchasing or applying any synthetic inputs. See Can I Use this Input on My Organic Farm? for more information. In addition, organic growers must document their soil management practices in their organic farming system plan as part of their certification, and keep records of all inputs purchased and applied.

Although the following sections address nutrient management and soil building practices separately, these two apects of management are intimately connected through a system of management. Organic farms that achieve their goals maintain soils and protect the environment while using modest amounts of inputs. Soil tests and simple budgeting tools can help producers maintain balance to achieve success.

Supplying and Managing Nutrients

Although crop nutritional requirements are the same for organic and conventional farms, organic producers apply natural materials and emphasize practices that retain and recycle nutrients within the soil. Sixteen elements are consistently found to be necessary for plants to complete their life cycles (Tables 1 and 2). Additional elements (Table 3) are listed as essential for some species and for animals relying on plants for their nutrition. Carbon, hydrogen, and oxygen, which account for about 95% of plant biomass, are supplied from carbon dioxide and water. The other macronutrients with concentrations greater than 500 micrograms/g plant include nitrogen, phosphorus, potassium, sulfur, calcium, and magnesium (Table 1). Micronutrients taken up in lower abundance are no less neccessary but are not limiting to growth in most situations. Sandy soils with inherenly low nutrient contents are an exception. Micronutrients include iron, zinc, manganese, copper, boron, chlorine, and molybdenum.

Table 1. Macronutrients essential for plant growth.

ElementCationicAnionicOther
NitrogenNH4+NO2-, NO3-organic
Phosphorus-HPO4-2, H2PO3-, polyphosphatesorganic
PotassiumK+--
CalciumCa+2--
MagnesiumMg+2--
Sulfur-SO4-2, S2-2organic

Table 2. Micronutrients essential for plant growth.

ElementCationicAnionicOther
IronFe, Fe+2, Fe+2-organic-chelated
ManganeseMn, Mn+2-organic-chelated
CopperCu, Cu+2-organic-chelated
ZincZn, Zn+2-organic-chelated
Molybdenum-Mo, MoO4--
Boron-Bo, B(OH)4-, H3BO3H3BO3
Chlorine-Cl--
NickelNi, Ni+--

Table 3. Micronutrients essential to support animal health.

ElementCationicAnionicOther
CobaltCo+2--
Selenium-SeO4-2, SeO3-2, Se-2organic
SodiumNa+--
Silicon-SiO2-2-

Organic farmers use natural materials or, when possible, exploit biological processes to supply needed nutrients to soils. Organic fertilizers are needed in larger quantities than are conventional fertilizers because nutrient concentrations tend to be lower. Organic fertilizers can be more expensive, more bulky and less uniform than conventional counterparts. Before applying anything to your field, you should know what the nutrient analysis of the material is, and be certain the substance is allowed by your certifier. See Can I Use this Input on My Organic Farm? for more information.

Table 4. Some of the most commonly used NOP-approved amendments are summarized below. Nutrient contents are listed as proportion of N:P2O5:K2O.

Fertilizer TypeDescriptionComments/Issues
Alfalfa meal or pelletsContain around 3 percent nitrogen and are commonly used as an animal feed.Commonly used for high-value horticultural crops but rather expensive for field crops.
AshWood ash (0–1–3) contains P and K, is a good source for micronutrients and acts as a liming agent.Commonly used in gardens; avoid over-application which can cause alkalinity and salt build up; avoid ash from treated wood or from the burning of manure.
Biological amendmentsWhile not fertilizers per se, there are a number of biological amendments used to promote biological activity or microbial associations between plants and soils with the intent of increasing plant nutrient uptake.A separate article covering this is under development.
Bone mealTypically a mixture of crushed and ground bone that is high in phosphorus. N contents vary depending upon handling. Range from 4:12:1; 1:13:0; 3:20:0.5.Permitted as a soil amendment but can not be fed to animals in certified production. Blood, bone and meat meal are prohibited in many countries in Europe and Japan because of BSE transmission risk.
Blood mealDried blood, is a soluble source of nitrogen. Typical N:P:K contents are 13:1:0. Solubility can vary. Should be used carefully, release of ammonia can burn plants and lead to loss through volatilization.Use limitations are the same as bone meal above. Recently Canada, with the support of IFOAM, proposed to prohibit cattle wastes as fertilizer at the UN Codex Alimentarius session in Montreal, 2004. Allowed under National Organic Program (NOP) regulation.
Calcium sulfate (Gypsum)CaSO4.2H2O. Contains about 23% Ca, is a mined deposit that is used to reclaim alkali soils, lower soil pH, and adjust cation balance.Good source for sulfur; useful for alkaline soils with high sodium content. Avoid gypsum from recycled sheetrock.
Cocoa ShellsCocoa shells (1:1:3) are available in some regions. They are used as a source of potassium and are popular due to their slow release properties.Also used as a mulch.
Dolomitic lime (Calcium-magnesium carbonate)CaCO3–MgCO3 is about 24% Ca and 20% Mg, is a very effective lime source. Over application is perceived to be a problem in horticultural systems. Under application is an issue in some field crop systems. Has a lime equivalent of 1900 lb/ton.Labs following the cation balance theory avoid the use of dolomitic limes, KCl, and oxide forms of trace elements.
Feather meal(13:0:0) a by-product of the poultry processing industry, which contains 15% N as non-soluble keratin has been promoted as a slow release N source.Feather meal can transmit the Avian flu, A(H5N1) virus, which is relatively easily transmissible to animals and people.
Fish emulsion(Ranges in content from 4:1:1 to 9:3:0); suitable for foliar feeding of starts and the spot treatment of transplants; is reputed to prevent stress, stimulate root growth and provide cold protection.Fish emulsion may be fortified with chemical fertilizer, so be suspicious of any product with a phosphorus content in excess of 4%. Fish products may also contain synthetic preservatives, stabilizers and other products prohibited under the NOP. Fish meal can also contain high levels of PCB’s.
Granite DustGranite dust is available in some regions. It is used as a source of potassium that is popular due to its slow release properties.Availability varies regionally.
Greensand (Glauconite)A mined sandstone deposit (typically 0:0:3 or 0:0:6) used as a source of potassium. Also contains iron, magnesium, silica and other trace minerals.Is a common ingredient in potting mixes.
High calcium lime (Calcium carbonate)Limestone containing 0–5% magnesium carbonate.Rapid reacting due to high solubility, valued source of Ca and liming where magnesium abundance is a concern and soil is not alkaline.
Hydrated limeHigh quality Ca(OH)2 is a dry powder produced by reacting quicklime with a sufficient amount of water to satisfy the quicklime's natural affinity for moisture.The National Organic Standards Board approved use of calcium hydroxide as a component of Bordeaux mix and lime sulfur for fungicide use, but does not allow its use as a soil amendment.
Manures and compostsNutrient contents vary widely, it is recommended they be applied on the basis of phosphorus need. Use as an N source leads to over application of P.Manure- and compost-based P has high plant availability, ranging 70–100% available. Compost, if produced according to NOP requirements, can be applied any time during the growing season. Animal manure can only be used on crops for human consumption if it is incorporated into the soil at least 120 days prior to harvest for crops that contasct the soil or 90 days prior to harvest for crops that do not contact the soil.
Potassium SulfateK2SO4 is a mined fertilizer not widely available. It has been used as a food preservative.This is allowed under the NOP rules if you can prove you are using a mined source that has not been treated with acid or any other chemical reaction to make the potassium more available. This is a good choice for high Mg soils, but it is fairly reactive and must be used carefully.
Rock phosphatesRock phosphates are frequently divided into hard rock and colloidal or soft rock forms. Rock phosphate typically has lower availability than colloidal P, which is low (2%) compared to materials like bone meal (11%). Marine sediments are typically ground and cleaned. Availability is low where soil pH is above 6 and biological activity is low. Addition of manures can increase solubility. Contains Calcium and acts as a liming agent.Phosphate rock is most effective at supplying P in soils with low pH (less than 5.5) and low calcium concentrations. Phosphate rock applications made to soils with pH greater than 5.5 may not be effective because of reduced solubility.
Sea weed and Kelp(Ranges from 1:0.2:2 to 1.5:0.5:2.5) Also high in micronutrients, Fe, Cu, Zn, Mo, Bo, Mn, Co. and Alginic acid (26%). Is used as a soil conditioner. Several kinds of sea weed and kelp are on the market. Kelp meal can be applied directly to the soil or in starter fertilizer.Can be high in salts and metals. Other reputed benefits are hormones or hormonal activity. Claims to protect plants from stress:  cold, drought and insect pressure. Expensive, so best suited for high value crops.
Seed meal(Ranges from 6:1.5:2 to 6:2:2); cotton seed and soybean seed meal have been popular.Now that generically modified crops are so wide-spread sourcing GM free meal can be difficult. Check with your certifier about the needed documentation.
Sodium nitrate(16:0:0) Historically an important component of fertilizers, and a raw material for the manufacture of saltpeter. It is a mined product that is about 16–20 percent nitrogen and highly reactive. It acts more like a synthetic fertilizer and can cause sodium buildup in the soil. Can contain medium to high levels of Boron.The NOP stipulates that the nitrogen obtained from sodium nitrate must account for no more than 20 percent of the crop’s total nitrogen requirement. This can be used cautiously when rapidly available nitrogen is needed. It is prohibited by the Farm Verified Organic and Organic Crop Improvement Association-International Federation of the Organic Agriculture Movements accredited levels of certification. European organic standards consider it to be the equivalent of a synthetic fertilizer because it is highly soluble and leaches readily from the soil. Check with your certifier before using.
Soybean meal(8:0.7:2) Useful to augment N and P.Often used as a feed additive; medium N release rate; may inhibit germination of small seeds. Check with your certifier before using, due to widespread use of GM soybeans.
Sulfate of potash (sul-po-mag and K mag or langbeinite)(0:0:21 with 11 Mg) Naturally occurring crystalline product commonly used to supply potassium.This and calcium sulfate are allowed under the NOP if you can prove you are using a mined source that has not been treated with acid or any other chemical reaction to make the potassium more available. Potassium sulfate is the better choice for high Mg soils, but it is fairly reactive and must be used carefully.

One of the simplest things a producer can do is maintain optimal soil pH levels. This is critical as pH influences nutrient solubility, microbial activity, and root growth. High pH favors weathering of minerals an increases the release of cations but reduces the solubilty of salts including carbonates and phospates. Lower pH values favor fungi and high pH favors bacteria. Soil pH can also affect the plant’s ability to take up nutrients directly. At very low pH values (<3), cell membranes are impared and become leaky. For most crops, soil pH levels are optimal between 6.0 and 7.0. Lime can be applied to raise the pH of acidic soils (pH <6) and supply calcium. Alkalinity, which is more difficult to correct, typically requires the use of sulfur and this remedy is typically temporary and more expensive than liming. When adjusting the pH, it is important to know the crop’s pH requirement since optimum pH levels vary by crop.

Nitrogen, is abundant in the environment yet remains the most frequently limiting nutrient for crop production. Organic farms frequently acquire N through nitrogen fixation by legumes. Legume cover crops, green manures, and legume sods can be an excellent sources of N. Vigorous stands of alfalfa, red clover, crimson clover, or hairy vetch can provide between 100-200 lbs N, which should be most, if not all, of the needed N for subsequent crop. About half the N in a green manure is released during decomposition following incorporation. Nitrogen needs are often supplimented by the addition of animal manures, either composted or raw, or other more concentrated sources of nitrogen. These include blood meal, fish emulsion, fish protein, kelp and seaweed, and vegetable meals. Mined nitrates, such as sodium nitrate (NaNO3, bulldog soda, or Chilean nitrate) may be used, but are limited to a maximum of 20 percent of the crop’s total N requirement. Certifiers frown on use of imported N sources because these share the problems of conventional N sources. Ideally, organic systems will rely on rotations that supply most, if not all, of their N needs.

Phosphorus is another macronutrient that is frequently limiting in sandy soils and/or where systems do not receive additions of animal wastes. Soil P is found in organic and in inorganic forms that are slowly available. Phosphorus availability is sensitive to soil pH and organic matter decay rates. Important sources of P include manure, bone meal, fish and poultry meal, and rock phosphate. High levels of phosphorus are a risk associated with use of manures and some composts.

Potassium is taken up from soil solution and is abundant in soils rich in illitic clays. Mineral weathering can be an important source of K in some soils. Potassium is weakly held on the exchange and so can be depleted where leaching rates are high. Manure additions and plant meals are good sources for K.

Common sources for nutrients are:

  • Potassium: manure, alfalfa meal, kelp meal, greensand, wood ash, potassium sulfate, and granite dust
  • Sulfur: acid rain, manures
  • Calcium: lime, colloidal phosphate, bone meal, gypsum, and wood ashes
  • Magnesium: dolomitic lime and langeinite
  • Micronutrients: mineral weathering, manure, compost, and liming amendments. The National Organic Program requires that micronutrients not be used as defoliants, herbicides, or dessicants. Micronutrients made from nitrates or chlorides are prohibited. Soil deficiencies must be documented by soil or tissue testing.

Methods Used to Build Soils

Bare fallow

Bare fallow can be used with fallow periods occurring between harvested crops. Fallows commonly occur over the winter in temperate zones or during the dry season in Mediterranean or tropical zones. Use of bare fallow to accumulate water and, at times to control weeds only works to enhance the soil where it concentrates resources enough to increase overall crop productivity. If bare fallow is used, soil erosion must be prevented.

Crop rotation

Crop rotation varies plant species in time and space and is an important strategy for organic farmers. Goals are to keep the soil surface covered with a growing crop for most of the year. Key elements of rotations include the breaking of disease and pest cycles and the inclusion of soil building cover crops or cropped fallow periods. By selecting effective cover crops or perennial crops farmers can maintain or increase soil organic matter content and nutrient availability during periods when cash crops are not grown. For most organic farmers, fertility is based on the rotation and not the amendment.

Cover crops

Cover crops include annual, biennial, or perennial herbaceous plants grown in pure or mixed stands. Annual covers occupy the rotation for part of the year. Perennial crops may be referred to as ley or pasture phase or as a plant-fallow. Cover crops provide soil cover and can help loosen compacted soil through the growth of roots. They enhance soil physical condition and improved water filtration. Legume cover crops provide nitrogen while non-legumes can increase nutrient availability to subsequent crops by taking up nitrogen, phosphorus, and potassium that might otherwise leach or become unavailable to plants.

Diversification

Diversification through rotation and use of covers or lay crops can reduce crop insect pests and diseases, if the cover crops are not alternate hosts. Both covers and perennial lay covers help maintain or increase soil organic matter if they are allowed to grow long enough to produce sufficient biomass. These also help prevent soil erosion caused by both water and wind, and suppress weeds. The management of residues within rotations can be quite sophisticated. For a good example, see the video of a living mulch system for soil fertility featuring Helen Atthowe of BioDesign Farm.

Helen Atthowe of BioDesign Farm describes using a living mulch to achieve slow release fertility
Video 1. Helen Atthowe of BioDesign Farm describes using a living mulch to achieve slow release fertility. Video credit: Alex Stone, Oregon State University, Weed Em and Reap Part 2 Living Mulch System Soil Fertility video.

For more information on rotation and cover crops see the ATTRA publication Overview of Cover Crops and Green Manures and the SARE publication Managing Cover Crops Profitably.

Judicious use of tillage

Tillage is an integral part of many organic systems. Management of soil tilth, organic matter, and fertility is an important aspect of a successful organic farming system. Current organic systems usually require tillage prior to planting and cultivation after planting, especially for corn and soybean production, to control weeds and reduce the incidence of seedling diseases and insect pests. However, tillage destroys the organic matter that is critical in improving soil fertility and soil water-holding capacity. Tillage should be performed when soil moisture is low enough to prevent compaction. Since primary tillage operations are usually performed at least a month before a crop is planted, this requires careful planning and the ability to take advantage of periods of dry weather. No-till agriculture in organic systems is starting to be used in parts of the country. TheRodale Institute has experimented with no-till organic farming using cover crops and tractor-mounted rollers to kill the cover just before planting into it. Ron Morse at Virgnina Tech and Nancy Creamer at North Carolina State University have been adapting these systems for organic vegetable production. Watch Weed Em and Reap Part 2 for more information.

Organic amendments

Organic amendments can be an important resource. Soil fertility and physical condition can be effectively maintained with rotation and appropriate use of organic amendments. Application should be made based on soil testing and/or use of budgets. Manures and composts are the most common organic resources where livestock is in the vicinity. Estimating nutrient contents and availability is neccessary for organic materials. For a farmer's perspective on using organic amendments, watch the video of Steve Pincus of Tipi Produce.

Steve Pincus of Tipi Produce in Wisconsin explains how fertility is not a matter of NPK

Video 2. Steve Pincus of Tipi Produce in Wisconsin explains how fertility is not a matter of NPK and how bulky organic matter is managed to improve tilth and maintain nutrient supply on his farm. Video credit: John Marlin, Agroecology and Sustainable Agriculture Program, University of Illinois.

Problems associated with nutrient over-addition

There is such a thing as too much of a good thing. Off-site problems caused by over-application of nutrients are better recognized than are problems caused on-site. Conventional agriculture is the primary source of non-point source and P pollution that contributes to myriad environmental and health risks. Problems of over-application in organic systems vary; probably P over-additions are most widespread where manure is readily accessible. This is because the ratio of P to N in manure exceeds that required by the plant. Avoid over-reliance on animal manures, in addition to accumulation of excess phosphorus, concentrations of copper, and zinc, which may accumulate in soils. Over-addition of N, particularly in readily available forms, is a common problem. Over-addition of N and P in organic systems can occur in situations where leaching is restricted (eg: in greenhouses) or after N rich cover crops or manures are applied. The notion that N surplus promotes microbial activity and works against organic matter storage and suppresses plant-microbe associations is finally being accepted as an additional downside of over-fertilization. Excess nutrients can also increase plant susceptibility to pathogens and arthropod pests and can also lead to increased weed competition. Tendency toward nutrient leaching and ability to hold and retain nutrients varies with soils and climatic conditions. Texture and CEC are related to this, with nutrient storage capacity increasing with soil clay and silt contents and cation exchange capacities.

Soil Tests and Nutrient Budgeting

To manage nutrients effectively you can use soil testing and nutrient budgeting. Soil tests are used by organic farmers for several reasons:

  1. to ensure that pH and nutrient levels and proportions are in appropriate ranges;
  2. to justify the application of micronutrients and other approved fertilizers to a certifier, or to comply with other certification requirements;
  3. to identify soil nutrients in excess, so soil and fertility management strategies can be manipulated to a) reduce levels of excess nutrients over time, or b) mitigate the impacts of the excess nutrients on crop, soil, and environmental quality; and/or
  4. to track trends in nutrient content, pH, and soil organic matter content over time to ensure soil improvement is taking place.

The National Organic Program regulations require that micronutrients and other fertilizers be applied only when soil or tissue tests indicate a deficiency. Because of this language, some certifiers may require soil and possibly other tests. Contact your certifier for its testing requirements. See the related article Organic Certification of Vegetable Operations.

Frequency of soil testing will depend on your purpose in testing and your situation. To track trends in macronutrients, pH and soil organic matter content, testing once every two or three years, or at a specific point in your rotation cycle, may be sufficient. However, if you are just starting to manage your soil’s fertility with organic practices, or adopting new soil or nutrient management practices, you might want to test more frequently.

Timing of testing will also depend on the purpose of the test. To determine nutrient status of your soil for the upcoming season, test your soil in early spring. To test contents of nutrients with potential to leach over the winter, test in late summer.

A typical soil test evaluates your soil’s pH, CEC, and content and proportion of macronutrients—calcium, magnesium, potassium, phosphorus, and sulfur—which are required by plants in relatively large quantities. Soil organic matter content may not be a routine test, but can be requested. Soils can also be tested for micronutrients (nutrients required by plants at relatively small quantities).

Soil testing laboratories use different soil testing methods that may generate different results. It is important to understand the methods used to generate your test results and use interpretation information that corresponds to that testing method. In addition, using the same testing laboratory for all your testing over time will allow you to compare your test results from year to year and track trends. A soil test is only as good as the soil sample it evaluated. It is important to take a representative sample of the field and the soil volume the crop plant roots will explore to obtain nutrients.

References and Citations

Further Reading

  • Agricultural Marketing Service—National Organic Program [Online]. United States Department of Agriculture. Available at: http://www.ams.usda.gov/nop/ (verified 10 March 2010).



http://www.extension.org/pages/18565/organic-soil-fertility

728x90
728x90




흙은 한정된 자연자원이지만, 식량안보에서 담당하는 역할은 매우 중요하다. 

기후변화의 영향으로 흙이 열화되고 침식되어 농민은 흙을 건강히 지키고자 맞서고 있다..


728x90

'곳간 > 영상자료' 카테고리의 다른 글

중국의 옥상텃밭 이야기  (0) 2013.01.17
흙을 이야기하자  (0) 2012.12.17
유기농업을 위한 풀 관리법  (0) 2012.12.02
골타기와 덮개작물  (0) 2012.12.02
농업과 녹색경제  (0) 2012.12.01
728x90

농사의 근본은 흙에 있다. 흙을 어떻게 건강하게 만드느냐가 농사가 잘 되느냐 아니냐를 결정하는 척도라고도 할 수 있다. 그도 그럴 것이 결국 식물이 뿌리를 뻗고 사는 공간이 바로 '흙'이기 때문이다. 

아래는 경남농업기술원에서 토양 관리의 중요성을 홍보하는 기사이다. 자기 농지의 흙이 어떠한 상태인지 토양검사를 통해 알아보고, 부족한 부분이 있으면 채운다. 이 기본적인 일만 제대로 해도 농사를 잘 지을 수 있다는 이야기다. 그런데 요즘 그러한 일이 잘 되지 않는다. 그 원인 가운데 하나가 볏짚을 논에 다시 돌려주지 않는 데에 있다. 축산업이 흥하면서 볏짚을 외부로 빼돌려 판매하는 데에만 열을 올리고 있기 때문이다. 이삭은 인간이 빼먹을지언정, 볏짚만이라도 흙에 되돌려줘도 상당한 도움이 된다. 어느 분야나 마찬가지겠지만, 역시나 결국에는 기본을 잘하는 사람이 살아남는다.

-------------------------



소비자는 밥맛이 좋은 쌀을 원한다. 밥맛이 좋고 품질이 우수한 쌀을 생산하기 위해 필요한 조건은 여러 가지가 있겠지만, 우선 우량종자와 알맞은 재배조건이 갖추어져야 가능하다. 재배조건 중에서 인위적으로 조절이 가능한 토양개선은 농가에서 조금만 신경을 써도 큰 효과를 볼 수 있는 부분이다.

 

경상남도농업기술원(원장 최복경)은 내년농사를 위해 지금 준비해야 할 논 토양관리 필요성을 홍보하고 있다.

 

올해 벼농사에서 토양이 작물에 빼앗긴 양분상태를 파악하기 위해서는 토양검정이 필요하다. 토양검정을 위한 시료는 벼 뿌리가 가장 많이 분포하고 있는 깊이의 흙을 대표할 수 있는 몇 개 지점에서 채취하여 해당지역 농업기술센터에서 운영하는 토양검정실에 의뢰해 분석하고, 시비처방서를 발급받아 활용하면 된다.

 

최근에는 축산농가에서 볏짚을 담근먹이로 조제해서 활용하는 일이 많기 때문에 벼 수확 후 볏짚을 논에 되돌려 주는 양은 갈수록 줄고 있는 실정이다. 볏짚이 농경지, 즉 논에 장기간 환원되지 않으면 토양 유기물 함량이 현저히 감소하게 되는데, 토양유기물의 감소는 땅심이 낮아지고, 미생물의 활성저하 뿐만 아니라 딱딱해지는 경변화를 심화시키는 원인이 된다. 따라서 볏짚, 또는 다른 방법으로라도 유기물을 지속적으로 보충해주는 것이 작물 생산성 증대는 물론 토양환경의 질적 개선에 반드시 필요하다고 할 수 있다.

 

남부지방의 경우 대부분 2모작 이상 경작을 하기 때문에 양분 소모가 중부지방 논토양에 비해 더욱 심한 편이다. 여기에 벼 수확 후 곧바로 이루어지는 시설원예작물, 또는 동계작물 파종 때문에 토양관리를 할 수 있는 시간적 제한이 많아 토양개량이 쉽지 않은 실정이다. 특히, 벼 수확 후 토양의 수분이 많은 조건에서 이루어지는 경운 정지작업은 작물 뿌리부분인 논흙 아랫부분 딱딱한 층을 만드는 원인이 되고, 시설수박을 재배할 경우 시들음증의 원인이 되기도 한다. 논흙에 물기가 많은 상태에서 하는 경운과 정지작업은 효율이 낮을 뿐만 아니라 경운 깊이가 얕아져 작물 뿌리가 깊게 들어가지 못하게 되고, 봄철 가뭄의 피해를 잘 받게 된다. 따라서 벼 수확시기에는 배수로정비를 철저히 해서 물 빠짐을 좋게 해주고, 수분이 어느 정도 빠졌을 때 경운작업을 하는 것이 좋다.


728x90
728x90



부지런한 농부는 가을갈이(추경秋耕)를 잘해 놓는다고 합니다. 가을에 땅을 뒤집어 놓으면 병균이나 벌레가 겨울 추위에 죽고, 거름은 잘 곰삭고, 흙도 얼었다 녹았다 하면서 좋아진다고 합니다. 확실히 겨울에는 불알이 얼 정도로 추워야 흙이 부서집니다.
2년 전인가, 안산 밭에는 아무개 마트를 지으면서 땅을 판 흙을 가져다 덮은 적이 있습니다. 처음에는 괜찮은 흙을 가져오더니, 어느 틈에 슬그머니 시커멓고 딱딱한 개흙을 같은 것을 갖다 부은 것입니다. 첫해에 그 밭을 일구면서 사람들이 얼마나 고생했는지 모릅니다. 완전 일군땅(개간지開墾地) 수준이었습니다. 하지만 첫해에 그렇게 노력을 들이고 나니, 그해 겨울이 지나면서 차츰 땅이 바뀌기 시작했습니다. 딱딱하고 시커멓던 흙이 푸석푸석 부서지기도 하고, 조금씩 사라지는 모습에 참 놀랐습니다. 땅은 거짓말을 하지 않는다더니 참말입니다.
요즘은 가을갈이하는 곳을 자주 보기 힘듭니다. 마을에서도 부지런한 분이나 그렇게 한다고 합니다. 대부분은 그냥 봄갈이(춘경春耕) 정도로 그치지요.

한쪽에서는 쟁기질을 하지 않는 분들도 있습니다. 갈지 않는(무경운無耕耘) 농법을 주장하는 분들이지요. 쟁기질을 하는 것이 좋은지 아닌지, 어느 방법이 더 좋고 나쁜지 싸울 필요는 없습니다. 모두 상황에 맞게 하면 되지, 정답이 어디 있겠습니까.
아무튼 제가 듣기로는, 그 농법의 뿌리는 일본이라고 합니다. 지난해 일본을 다녀오니 거기는 흙이 시커멓더군요. 함께 간 선생님께 여쭈니 화산재(화산회토火山灰土)라서 그렇다고 합니다. 일본의 흙은 유기물 함량도 엄청 높다고 하더군요. 하지만 우리 흙은 다들 알다시피 화강암이 부서진 흙이라 산성도도 높고, 무지 메마른 흙(척박토瘠薄土)입니다. 그렇다면 옛날 사람들이 쟁기질을 한 까닭이, 이러한 흙의 차이에 있지 않았을까요? 우리도 일본의 흙처럼 유기물 함량이 높아지면 굳이 쟁기질하지 않아도 괜찮지 않을까요? 그래서 무슨 일이건 상황과 조건에 맞춰야지, 알아보지도 않고 무엇이 무조건 옳다고 하는 자세는 위험하다고 생각합니다. 갈지 않는 농법이 좋은지 아닌지는 저마다 알아서 판단할 문제입니다. 뭐든지 장단점이 있고, 여건에 맞는 것이 따로 있으니까요.
마지막으로 하나만 말하자면, 쟁기질의 효과 가운데 하나는 겉흙(표토表土)과 속흙(심토深土)을 뒤집어엎는 데 있다고 합니다. 한 해 동안 수고한 겉흙은 속으로 보내 쉬게 하고, 밑에 팔팔한 놈을 끄집어내는 효과가 아닐까요?

쟁기질은 그것 말고도 숨은 목적이 있습니다. 어떤 작물을 심을 것인가에 따라 쟁기질하는 방법이 달라지는 것이 그것입니다. 저도 쟁기질을 해보지 않아서 자세히는 모릅니다. 하지만 동네 어르신의 말씀에 따르면, 보리를 심을 때는 두 거웃 갈이를 하고, 고구마를 심을 때는 한 거웃 갈이를 했다고 합니다. 그야말로 작물에 따라 그 특성에 맞는 쟁기질 방법이 있었던 것이지요. 높고 좁은 두둑이 필요한지, 아니면 넓은 두둑이 필요한지에 따라서 쟁기질하는 법이 달랐습니다.
두 거웃 갈이는 한 번 갈면서 저쪽으로 갔다가, 다시 그 옆을 갈아 오면서 한 두둑을 만든다는 소리입니다. 이 말은 경기도 사투리입니다. 생식기 주변에 난 털을 뜻하는 거웃과는 다른 뜻입니다. 이를 뜻하는 말은 지역에 따라서 다양합니다. 거웃을 예로 들면, 충청도나 강원도 같은 산골짝에서는 망이라고 하더군요.
쟁기질은 보통 네 거웃 갈이까지 했다고 합니다. 네 거웃 갈이를 하면 한 1.2m 이상 되는 넓은 두둑을 지을 수 있다고 합니다. 고추나 고구마는 좁고 높은 두둑(고휴高畦)을 짓지만, 보통 작물은 그냥 펀펀한 두둑(평휴平畦)을 짓습니다. 작은 규모의 농사에서는 특별하지 않은 이상 그렇게 하지요.

쟁기질할 때 쟁기를 잡는 사람은 쟁기꾼이라고 했습니다. 상여꾼, 장사꾼 하듯이 그 분야에 전문이라는 뜻으로 꾼이라는 말을 붙였습니다. 일 잘하는 쟁기꾼은 서로 모셔 가려고 했다는 말로 봐서, 그때에는 엄청난 기술자였을 겁니다.
쟁기질을 끝내면 뒤를 따라가면서 쇠스랑이나 곰배로 흙덩이를 부수는 일을 했습니다. 트렉터로 로터리 치면 아주 고운 흙이 나오지만, 쟁기로 하는 만큼 큰 흙덩이는 따로 부숴야 했습니다. 그러고 나면 며칠 뒤에 바로 써레질에 들어가지요. 써레질은 앞에 잠깐 설명했으니 더 말하지 않겠습니다. 써레질하는 것을 동사로 ‘써린다’ 또는 ‘쓰린다’ 등으로 불렀습니다. 밭이야 어느 정도 수평이 맞지 않아도 괜찮았지만, 논 써레질에서 그러면 큰일이지요.

마지막으로 흙의 종류를 구분하고 끝내겠습니다.
흙의 굵기에 따라 말하면, 먼저 자갈흙(역토礫土)이 있습니다. 말 그대로 자갈흙이죠. 다음은 모래흙(사토砂土)입니다. 모래흙은 땅콩 같이 물이 잘 빠지는 것을 좋아하는 놈들이 잘 사는 곳입니다. 만지면 부스스 부서지는 흙이라 갈기도 좋고, 삽질도 편합니다. 하지만 물이 너무 잘 빠진다는 단점이 있습니다. 그래서 비료를 주면 그 효과가 빠르지만, 물이 잘 빠져서 가뭄(한발旱魃)에 피해를 입을 우려가 있습니다. 이런 흙이면서 물이 잘 빠지는 논이라면 철, 망간, 규산 등이 모자라기 쉬워서, 질퍽한 딴흙(객토客土)을 넣어야 합니다.
또 모래참흙(사양토砂壤土)이 있습니다. 입자가 세밀한 찰흙(점토粘土), 중간인 실트, 거친 모래가 거의 같은 양이 섞여 있는 흙에 비해서 모래가 조금 많은 흙입니다. 이 정도만 해도 농사짓기 괜찮은 흙입니다.
흙 가운데 가장 좋은 흙은 뭐니 뭐니 해도 참흙(양토壤土)입니다. 모든 농사에 가장 좋은 상태의 흙이지요. 고운 흙 가운데 질흙이 25~40% 정도인 흙입니다. 참나무, 참깨처럼 참으로 좋은 참흙입니다. 또 다른 참흙으로 질참흙(식양토埴壤土)이 있습니다. 눈치 빠른 분은 벌써 아셨겠지만, 찰흙이 많게는 절반 정도 포함된 흙입니다. 참흙보다는 좀 거시기하지만 이 정도면 훌륭하죠. 양분, 특히 물기를 잘 잡고 있어서 벼나 콩, 과수에 좋습니다.
다음 질흙(식토植土)이 있습니다. 절반 이상이 질흙인 흙입니다. 그만큼 끈덕끈덕하겠지요. 물기도 많고 거름도 잘 잡고 있지만, 공기나 물이 잘 통하지 않아 농사짓기 어렵습니다. 모래흙을 섞어 주는 것이 좋고, 석회나 두엄 같은 유기물을 섞기도 합니다. 그리고 아까 말했듯이 가을갈이를 거칠게 해서 잘 말리는 것도 좋습니다. 흙이 안 좋다고 불평불만하지 말고, 하나하나 내 힘으로 땀흘려 가꾸면 참흙으로 만드는 것도 금세입니다. 세상에 못할 것이 없는 것이 사람이죠. 그만큼 사람이 참 무섭습니다.
다음 찰흙(점토粘土)입니다. 국민학교 때 뻔질 나게 사 가던 흙이 바로 이 찰흙입니다. 이 흙은 큰 돌이 부서지면서 생긴 것입니다. 그보다 더 심한 찰질흙(중식토重植土)이 있고, 가장 질퍽한 질찰흙(중점토重點土)이 있습니다. 물기를 머금으면 아주 찐덕해지는 흙입니다. 이런 흙에서 농사를 짓는다면 쟁기질하기도 힘들고, 마르면 딱딱하게 굳어서 쩍쩍 갈라집니다. 이런 흙에서 농사지으려면 얼마나 고생하는지 모릅니다.

지금까지 흙을 말했습니다. 돌아서서 보니 너무 모자랍니다. 모자란 글이지만 여기까지 읽어 주셔서 고맙습니다. 다음 편은 추수秋收, 곧 가을걷이와 관련된 말을 골라서 찾아뵙겠습니다.
728x90

'농담 > 雜다한 글' 카테고리의 다른 글

희망찾기... 2001년 봄에 쓴 글  (0) 2008.05.14
소? 소고기?  (0) 2008.05.14
단양군 적성면 기동리 방문  (0) 2008.05.14
단양군 적성면 각기리 선돌  (0) 2008.05.14
토정유고의 한 구절  (0) 2008.05.13

+ Recent posts