728x90

우리가 옷을 발가벗고 맨몸으로 햇빛과 공기 중에 그대로 노출되어 있다면 어떻게 되겠는가? 

당연히 추위와 더위를 더 느끼고, 피부는 건조해질 것이다.


흙도 마찬가지이다.

흙을 우리의 피부라고 생각해 보자.

흙이 햇빛과 공기 중에 그대로 드러나 있다면 어떨까?

당연히 더 뜨겁거나 차가워지고, 또 증발량이 많아져 건조해질 것이다.


수분이 적당하지 않은 흙에서는 농사 또한 잘 되지 않는다.

흙을 맨살 그대로 노출시키지 않는 방법으로는 덮개식물을 이용하는 방법이 있다.

덮개작물이라 하지 않고 덮개식물이라 한 것은, 살아 있는 풀을 이용하는 방법과 베어낸 풀이나 짚을 활용하는 방법이 있기 때문에 그렇다.


다음 동영상을 보고 이제는 가급적 흙에 예쁘고 멋진 옷을 입혀주도록 하자.

내 옷만 살 일이 아니라 흙을 잘 가꾸고 꾸미는 일에도 신경을 써야 한다.





728x90

'농담 > 농법' 카테고리의 다른 글

토양의 유형과 개량제  (0) 2015.02.03
무경운 이앙기  (0) 2015.01.28
왜 무경운이 중요한가  (0) 2015.01.25
전통 농법의 중요성  (0) 2015.01.25
녹비작물을 심자  (0) 2015.01.14
728x90

토양생태계라든지, 지속가능성이라든지 하는 개념보다 농지에서 어떻게 해서든지 빨리, 많이 수확을 뽑아내 돈을 왕창 벌겠다는 농업행위가 경운이다. 

특히, 흙을 밀가루처럼 만드는 로타리의 폐해는 심각하다.


다음 동영상에서도 지적하듯이 그러한 작업은 토양을 대규모로 교란시킴으로써 모든 것을 무로 되돌리고 만다.

지속성이 중요하지 않으니 그럴 것이다. 새 술은 새 부대에 부으라는 듯이 흙을 무로 돌려놓는다.

그 결과, 토양의 생태계는 핵폭탄을 맞은 것처럼 사라지고 작물은 토양 미생물 등이 아니라 인간이 인위적으로 조절하는 비료 등에 의존하며 살아간다. 어찌 보면 과학영농에 적합한 방법으로 보인다. 사람이 모든 걸 통제하고 제어할 수 있는 상태가 되니 말이다.


하지만 건강한 생태계, 지속가능한 농업을 고민하는 사람이라면 함부로 흙을 교란시키지 않는 방법을 궁리해야 할 것이다.






728x90

'농담 > 농법' 카테고리의 다른 글

무경운 이앙기  (0) 2015.01.28
가뭄을 이기는 한 방법  (0) 2015.01.25
전통 농법의 중요성  (0) 2015.01.25
녹비작물을 심자  (0) 2015.01.14
생태농업이 관행농업보다 후진 건 아니다  (0) 2015.01.01
728x90

다음은 돌려짓기, 사이짓기, 섞어짓기 같은 전통농업에서 활용하던 농법이 왜 중요한지 설명하는 동영상이다.


다양한 작물을 돌려가며 어우러지게 재배함으로써 결국 토양의 건강을 증진시키고, 그것이 농사가 잘 되도록 이어진다는 것이 핵심이다.


돈에 미쳐서 한 가지 작물만 비료의 힘으로 뽑아내다 보면... 땅이 망가져서 결국 농사가 망한다.

그건 사람도 자연도 지속가능하지 않다.







728x90

'농담 > 농법' 카테고리의 다른 글

가뭄을 이기는 한 방법  (0) 2015.01.25
왜 무경운이 중요한가  (0) 2015.01.25
녹비작물을 심자  (0) 2015.01.14
생태농업이 관행농업보다 후진 건 아니다  (0) 2015.01.01
땅떼기에 대해 알아봅시다  (0) 2014.09.03
728x90




Imagine if someone invented machines to suck carbon out of the atmosphere — machines that were absurdly cheap, autonomous, and solar powered, too. Wouldn’t that be great? But we already have these gadgets! They’re called plants.

The problem is, plants die. So there’s one hurdle remaining: We have to figure out how to lock away the carbon in dead plants so that it doesn’t just return to the atmosphere. The obvious place to put that carbon is into the ground. And so, for years, scientists and governments have been urging farmers to leave their crop residue — the stalks and leaves — on the ground, so it would be incorporated into the soil. The trouble is, sometimes this doesn’t work: Farmers will leave residues on a field and they won’t turn into carbon-rich soil — they’ll just sit there. Sometimes, the whole process ends up releasing more greenhouse gasses than it locks away.

This has left people scratching their heads. But now a simple idea is spreading that could allow farmers to begin reliably pulling carbon out of the atmosphere and into their soil.

Clive Kirkby was one of those government agents urging farmers to leave dead plant residues in their fields. He was working in New South Wales, Australia, where farmers traditionally have burnt off their wheat stubble after harvest. Kirkby implored farmers to stop. Instead of torching all that plant residue and releasing the carbon into the air, he told them, let it stay on the ground. It seemed like a win-win: The carbon was harmful in the air, where it contributed to the greenhouse effect, and beneficial in the ground, where it made the soil rich.

As he was proselytizing, Kirkby began to bump heads with an agronomist named John Kirkegaard. “Look, Clive,” Kirkegaard would say, “the best treatment here is burn and cultivate — that’s the one that’s growing the best crops.”

This made Kirkby crazy. Burning was bad enough, and cultivation, which essentially means plowing, was also exactly the opposite of what he wanted. When farmers break up the soil with cultivation it releases some of the carbon stored there, according to conventional wisdom. But Kirkby had to admit that Kirkegaard had data on his side. The agronomist would show him the numbers, and it was clear that the soil organic matter (which holds the carbon) wasn’t increasing. In some cases, it was decreasing.

“I’ve been returning the stubble to the ground now for six years, and it’s just not going into the soil,” Kirkegaard told him.

The way that soil locks up greenhouse gas has been frustratingly mysterious, but the basics are clear: After plants suck up the carbon, the critters (microbes and fungi and insects) swarming in the topsoil chew up plant molecules, subjecting them to one chemical reaction after another as they pass through a fantastically complex food web. If everything goes right, the end result is microscopic bricks of stable carbon, which form the foundation of rich black soil.

Kirkby knew that there must be some mysterious quirk of this topsoil ecosystem that was thwarting him. But how do you investigate a complex, microscopic community that lives underground? There are just so many different organisms eating each other, and cooperating, and parasitizing one another, that we have no clue what’s going on there. People are studying it — but mostly they are reporting that the soil microbiome, as it’s called, is far more confusing than anyone suspected.

Kirkby, however, came up with an idea, that in theory, might allow farmers to manipulate the soil microbiome without having to understand everything that was going on in that black box. He pursued this idea for years, and though he was already nearing retirement age, went back to school and earned a PhD as he assembled evidence. If he’d simply tried to win his original confrontation with Kirkegaard, they’d have remained locked in a stalemate. Instead, because they allowed their minds to be shifted by the evidence, that adversarial relationship was tremendously productive. Kirkby came full circle when Kirkegaard took him on as a post-doctoral fellow (at the age of 66, Kirkby had to be one of the oldest postdocs ever).

The idea that drove Kirkby was elegant in its simplicity. “The way you get carbon into the ground,” he said, “is to take plant residue and turn it into microorganisms.” To grow microorganisms you have to feed them.

They will eat corn stalks and wheat straw, but that, alone, is not a balanced diet. That’s like giving people nothing to eat but a mountain of sugar. There are certain elements that all creatures on earth need to build the bodies of the next generation: carbon, nitrogen, phosphorus, sulfur, oxygen, and hydrogen. These six elements are the basic ingredients of living organisms. By leaving stalks and stems on the fields they were providing a lot of carbon, and oxygen and hydrogen comes easily from the air, but the bugs were lacking in nitrogen, sulfur, and phosphorus. Provide enough of these missing building blocks, Kirkby figured, and the soil microbes would finally be able to consume the plant residue. He tried it. It worked.

One lab test provides a dramatic visual of how this works. The scientists added wheat straw to two pans of sandy soil, and fertilized one with nutrients. That pan looks like rich compost. The untreated control looks as lifeless as the surface of Mars.

 

Courtesy of CSIRO Plant Industry / CSIRO Agriculture (CA Kirkby, JA Kirkegaard, AE Richardson)

I saw this picture recently when I met, via Skype, with Kirkby, Kirkegaard, and another collaborator named Alan Richardson. All work at the Australian government’s Commonwealth Scientific and Industrial Research Organisation. They crowded together in front of the computer in Kirkegaard’s Canberra office.

“That’s moist soil with chopped up wheat straw on the left,” Kirkegaard said. “There’s no reason why that shouldn’t have decomposed, except for the fact that nutrients are missing. When you give them the nutrients, all the wheat straw is gone, and you get the results of the microbial activity and their bodies and it creates a whole lot of…”

“Humus!” cried Kirkby. He spoke with enthusiastic, rapid-fire intensity, his accent pinching the vowels through the nose: “With the right balance of nutrients you get a population explosion. And that’s what you want. The carbon is in the soil’s organic matter, and that’s essentially dead bug bits. And live bugs. Humus!”

Richardson, who stood leaning against the far wall, chimed in, gruff and sedate compared to Kirkby. “Historically we’ve fertilized the crop,” he said. “We’ve been interested in the crop. The paradigm shift is in thinking that you have to fertilize the system, the microbes and all that. And through that you support the crop.”

Instead of simply trying to optimize for the plants, they’ve realized, you can optimize soil along with the plant – you can optimize the whole system.

The three men explained that, when they looked at soil organic matter from around the world, the proportions of nutrients — the ratio of carbon atoms to nitrogen, for instance — are stunningly consistent. The organic matter is microbes. And if you want to build more of it, you have to give the microbes the right ratios of nutrients to build more tiny, cellular bodies.

Instead of trying to identify every soil microbe and understand what it’s doing, they have hit upon a way of treating the whole mess like a super-organism that responds in predictable ways.

The scientist Richard Jefferson, who introduced me to this work, calls it breeding by feeding: We don’t actually know what these microbes are that we’re breeding; we only know that when we set out the right proportions of food, they click into high gear.

All this helps explain why organic farms often capture more carbon. In adding compost to amend the soil, organic farmers are adding the same ratios of nutrients. The organic claim that fertilizing with synthetic nitrogen kills off soil life actually makes sense, Kirkby said; it’s just that the problem has nothing to do with the nitrogen’s artificiality. The trouble is that farmers are applying the nitrogen without the other nutrients necessary to nurture the microbiome.

“As agronomists, we talk about nutrient-use efficiency,” Kirkegaard said. “Now, the best way to have high nutrient-use efficiency is to mine the organic matter, because that comes to you for free. You’re wanting to put on juuuust enough nutrients to feed the crop and not have any left over. And that just means the other crop, under the soil, the microbial crop, misses out. As a result, we’ve lost about half the organic matter in land we’ve been using for agriculture.”

I wanted to get a reality check from another scientist, because this all sounded almost too good to be true. So I got in touch with a true authority in the field, Rattan Lal, president elect of the International Union of Soil Sciences. Lal took a look at look some of the work and pronounced his judgment: “I agree,” he said. “This phenomenon is well understood.” A colleague of Lal’s was teaching students to applyexactly the same ratios of nutrients 50 years ago, he said.

This stopped me. If this is old news, why haven’t we been putting it to work? Why the confusion when no-till fails to capture carbon? Why the mystery surrounding the ability of organic farming to do so?

Sometimes good information simply doesn’t spread everywhere it should go, Lal said, with a note of weariness. This isn’t a exactly breakthrough, he said, but he welcomed the work and said he hoped people would pay attention this time. When he followed up with an email, he wrote: “The theme addressed is very important and it must be brought to the attention of general public and policy makers.”

When I initially spoke with Kirkby, Kirkegaard, and Richardson, they had been forthright in telling me that we’ve known about this golden ratio of nutrients for a long time. They also noted that there were other scientists like Sébastien Fontaine publishing similar papers. In a follow-up email, Richardson wrote, “What we think is new is the direct connection between the soil microbiome and the [soil organic matter], which is mediated by [the ratio of nutrients].  We think that our set of recent papers provides some of the first real evidence that underpins this connection and shows evidence that the dynamics can in fact be changed.”

Jefferson says the Australians are being modest, and conservative with their claims. Connecting the well-known nutrient ratios with the microbiome truly is a breakthrough, he said.

“Now they have a mechanism to explain how this works, which allows you to make predictions, so you can imagine experiments driving this forward. one of the things that’s exciting for me is that this really bridges empiricism and scholarly science nicely. There have been tens of thousands of anecdotes noted about the performance of small scale, traditional agriculture — empirical studies or stories of small farmers who do exciting things in terms of performance and resilience. It has been largely dismissed by the hard-core science community because it has not been scalable and replicable. We can’t take one farmer’s success and move it to the next farmer or the next ecosystem because we have no understanding of how it works — complex systems don’t extrapolate well, they don’t work out of context.”

In other words, when we see an organic farmer building up the soil and achieving amazing results, it’s hard to copy it because we don’t know what to imitate. What is it that makes this work? The type of fertilizer? The local microclimate? The prayer the farmer says before breakfast? The work coming out of Australia provides the traction to separate superstition from the stuff that gets results.

Both Lal and the Australian scientists agree that there’s still one more major hurdle, which may have kept this information from spreading: These nutrients cost money. If farmers were paid for locking up carbon, they would gladly buy the fertilizers, Lal said, but right now the reimbursements are far too low. Even at the high point of the carbon markets, when people were paying $30 per ton, it would not be enough to reimburse farmers. “It costs $800 a ton of CO2 to do geological sequestration, you know, pumping carbon underground,” he said. “If farmers could get even a tenth of that, $80 a ton, I know many soil-poor farmers would participate.”

Kirkby thinks that, by tinkering with the soil microbiome, farmers might see enough gains to pay for the extra inputs. There’s already evidence that the soil microbes can help suppress plant disease and improve dirt quality. Extending this concept of growing a healthy system, not just a healthy crop, could yield profits.

“We’re probably not going to increase yields incredibly, but we might be able to improve incrementally,” Kirkby said. “In a sandy soil we might improve water-holding capacity. In a heavy clay soil we might reduce diseases a little bit — added together it might pay for the nutrients at the end of the day.”

One thing is certain: If agriculture were able to switch from an emitter of carbon to an absorber of carbon, the effect would be huge. Plants, those cheap carbon-removal machines that nature has given us, work well. If we can get them to make our dinner while they are also sucking up greenhouse gas, what a coup that would be.

But it would be an even greater coup if we could begin, as these scientists have done, to understand how to manipulate whole ecological systems — rather than just systems that have been simplified and stripped down to easily controllable parts.

Further reading:


728x90

'곳간 > 해외자료' 카테고리의 다른 글

아프리카와 중국의 농업동맹  (0) 2014.07.04
미국의 다이어트가 실패한 이유  (0) 2014.07.04
텃밭농사의 이로움  (0) 2014.07.03
중국의 심각한 토양오염  (0) 2014.07.02
나무와 함께 짓는 농사  (0) 2014.07.02
728x90



세계를 먹여 살리는 다섯 단계의 계획

환경에 대한 위협을 생각할 때, 우린 저녁식사가 아닌 자동차나 굴뚝을 그리는 경향이 있다. 

그러나 진실은, 식량에 대한 수요가 지구의 가장 큰 위험 가운데 하나라고 주장한다. 


농업은 우리의 모든 자동차, 트럭, 기차, 비행기보다 많은 양의 온실가스를 배출하여 지구온난화에 가장 큰 기여를 하는 부문 가운데 하나이다. 주로 소가 배출하는 메탄과 논, 비료를 준 농지에서 나오는 아산화질소, 작물이나 가축을 키우려고 베어내는 열대우림에서 나오는 이산화탄소가 그것이다. 농업은 우리의 소중한 물을 가장 많이 사용하는 분야이며, 비료와 분뇨의 유출로 전 세계의 호수와 강, 해안의 생태계를 파괴하는 주요한 오염원이기도 한다. 또한 생물다양성의 상실을 가속화시킨다. 농지를 위해 초원과 숲을 밀어버리기 때문에, 중요한 서식지가 사라지며 농업은 야생생물 멸종의 주요 요인이 되었다.

농업에 의한 환경문제는 거대하며, 전 세계적으로 증가하는 식량 수요를 충족시키기 위해 더 중요해질 것이다. 이번 세기 중반까지 먹여살릴 입이 20억 정도 늘어 전체 인구는 90억 이상이 될 것이다. 그러나 급증하는 인구만이 우리가 더 많은 식량을 필요로 하는 유일한 요인이 아니다. 세계적으로, 특히 중국과 인도의 경우 경제가 성장하면서 육류, 달걀, 유제품에 대한 수요의 증가가 더 많은 수의 소와 돼지, 닭 등의 가축을 키우기 위해 옥수수와 콩을 재배하도록 압박하는 요인이 되고 있다. 이러한 추세가 계속된다면, 인구 성장과 풍성한 식단이란 이중고는 2050년까지 약 2배나 되는 작물을 재배해야 하도록 할 것이다. 

안타깝게도 세계의 식량문제를 해결하는 방법에 대한 논쟁은 관행농업과 세계 무역 대 지역 먹을거리 체계와 유기농업의 대결로 양극화되어 있다. 그 논쟁은 격렬해질 수 있으며, 우리의 정치처럼 공통점을 찾기보다는 더 분열되고 있는 것 같다. 관행농업을 선호하는 사람들은 현대의 기계화, 관개, 화학비료, 향상된 유전학이 수요를 충족시키는 데 도움이 되도록 수확량을 증가시킬 수 있다고 이야기한다. 그리고 그들이 맞다. 한편 지역 먹을거리와 유기농업을 주장하는 사람들은 세계의 소농들이 화학비료와 농약 없이 비옥도를 개선하는 기술을 채택함으로써 수확량을 충분히 증가시키고 빈곤을 벗어나는 데 도움이 될 수 있다며 반대한다. 그들 또한 맞다.

그러나 양자택일할 필요는 없다. 두 접근법 모두 절실히 필요한 해결책을 제공하지, 어느 하나에서만 오는 것이 아니다. 유기농과 지역 먹을거리이든 최첨단과 관행농업이든지 간에 좋은 생각은 모두 탐구하고 모두의 장점을 혼합하는 것이 현명할 것이다.

이 간단한 질문에 직면한 과학자들을 이끈 것은 행운이었다. 어떻게 농업으로 인한 환경 피해를 줄이면서 이용할 수 있는 식량을 2배로 늘릴 것인가? 농업과 환경에 대한 대량의 자료를 분석한 뒤, 우린 세계 식량의 딜레마를 해결할 수 있는 다섯 단계를 제시했다


농업의 얼굴

전 세계에서 소농은 세계를 먹여살리는 중요한 역할을 하고 있다. 그 노력 너머에는 여러 남성과 여성이 있다.


Mariam Kéita 씨는 말리 Siby에 있는 농장에서 땅콩을 수확했다. 하이브르디 종자, 화학비료, 관개라는 녹색혁명의 혼합물은 아프리카에서 시작되지 않았다. 그러나 사하라사막 이남의 국가들은 현재 그들의 수확량이 크게 향상될 수 있기 때문에 세계의 식량생산을 증대시킬 중요한 기회를 제공하고 있다. 




페루의 안데스 고산지대에 사는 Estela Cóndor 씨는 다섯 가지 품종의 감자를 재배해 시장에 내다판다. 그녀는 마슈아mashua라는 노란 감자는 식구들을 위해 요리한다. 콘도르 씨 같은 소농은 개발도상국의 사람들이 먹는 대부분의 식량을 재배한다.




말리 Siby의 Bassama Camara 씨.




미국 아이오와의 Sally Gran 씨.




에티오피아 Tulu Rei의 Girma Wodajo 씨.




미국 위스콘신의 Chris Covelli 씨.




우크라이나 Starovyshnevetske의 Valentin Tarasov 씨. 




방글라데시 Sajiali의 Anwara Begum 씨.




미국 사우스다코타의 Scott Dowling 씨.

산업형 규모의 농장은 하나의 작물을 거대한 농지에 재배하며 화학비료와 농약을 사용하여 고수확을 달성했다.




방글라데시 Jessore의 Jaghati 마을의 사람들.

소농이 산업형 농장에 비해 수확량에서 뒤처지는 경향이 있지만, 실제로는 사람들을 먹여살리는 더 많은 식량을 제공하곤 한다.




인도네시아 발리의 Pak Kompiang 씨. 




미국 아이오와의 George Naylor 씨.




우크라이나 Hlynske의 Olexandra Salo 씨.




미국 캔사스의 Frank Reese 씨.




영국 스카이 제도의 Paul McGlynn 씨.




첫 번째 단계: 농업의 발자국을 멈추자

대부분의 역사 동안 더 많은 식량을 생산할 필요가 있을 때에는 간단히 숲을 없애거나 초원을 갈아엎어 더 많은 농장을 만들었다. 우린 이미 작물을 재배하기 위해 남아메리카 정도의 크기를 밀어버렸다. 가축을 키우기 위해 우린 아프리카 정도의 크기를 접수해버렸다. 농업의 발자국은 북미의 평원과 브라질의 대서양 숲 및 열대우림을 놀라운 속도로 계속해서 밀어버리는 것을 포함해 전 세계에서 전체 생태계의 상실을 야기하고 있다. 그러나 우리에겐 더 이상 농지를 확장하여 식량생산을 증대하기 위한 여유가 없다. 농지를 열대우림과 맞바꾸는 것은 환경에 행하는 가장 파괴적인 일들 가운데 하나이지만, 여전히 배고픈 지구의 8억5000만 명에게는 거의 혜택을 주지 않고 있다. 농업을 위해 밀어버린 열대의 토지 대부분은 세계의 식량안보에 큰 기여를 하지 못하고 있으며, 대신 소와 가축을 위한 콩, 목재, 팜유를 생산하기 위해 사용된다. 산림 벌채의 방지를 최우선으로 해야 한다.

두 번째 단계: 우리가 가진 농장에서 더 많이 키우자

1960년대에 시작된 녹색혁명은 아시아와 라틴아메리카에서 더 나은 품종의 작물과 더 많은 화학비료, 관개, 농기계를 사용하여 수확량을 증대시켰다. 하지만 그와 함께 주요한 환경 비용을 발생시켰다. 세계는 현재 생산성이 떨어지는 농지, 특히 아프리카와 라틴아메리, 동유럽에서 수확량을 증대시키는 데 관심을 돌리고 있다. 이곳들은 현재의 생산 수준과 향상된 농법으로 가능한 생산 수준 사이에 “수확량 격차”가 있는 곳이다. 최첨단, 정밀 농업 체계만이 아니라 유기농업에서 가져온 방법을 활용하여 이러한 지역에서 수확량을 높일 수 있다. 


우리가 재배하는 곳, 우리가 재배하는 것, 우리가 재배하는 방법을 

더 효율적으로 만들 수 있다.

PAN AND ZOOM on MAPS

PASTURE

CROPLAND

농업이 존재하는 곳


앞으로 25년 동안 거의 모든 새로운 식량생산은 기존의 농지에서 이루어질 것이다.

FOOD

FEED AND FUEL

작물이 활용되는 방법


식량작물 칼로리의 단 55%만 사람이 직접 섭취한다. 동물을 사육하여 발생하는 육류와 유제품, 달걀은 또 다른 4%를 한다.

LOW

HIGH

수확량을 개선할 수 있는 곳


수확량이 가장 낮은 곳의 영양과 물 공급을 개선하는 것은 세계 식량생산을 58% 증대할 수 있다.

세 번째 단계: 자원을 더 효율적으로 활용하자

우린 이미 관행농업의 환경에 대한 영향을 극적으로 줄이면서 높은 수확량을 올릴 수 있는 방법이 있다. 녹색혁명은 집약적이고 지속가능하지 않은 수자원 사용과 화석연료를 기반으로 한 화학물질에 의존했다. 그러나 상업적 농업은 진보한 센서와 GPS를 장착한 컴퓨터화된 트랙터를 활용하여 화학비료와 농약을 더 정확하게 적용하는 혁신적인 방법을 발견함으로써 거대한 발전을 만들기 시작했다. 많은 농민들이 인근 수로에 화학물질의 유출을 최소화하는 데 도움이 되도록 자신의 토양 상황에 맞춰 화학비료의 양과 성분을 조절하여 적용한다.

유기농업도 물과 화학물질의 사용을 대폭 절감할 수 있다. 덮개작물과 흙덮개를 결합시키고, 토양의 질을 향상시키기 위해 퇴비를 활용하고, 물을 보전하고, 영양분을 강화함으로써 가능해진다. 많은 농민들이 비효율적인 관개 체계를 대체하여 점적관개처럼 더 정확한 방법으로 수자원을 현명하게 활용한다.  관행농업과 유기농업 모두에서의 진보는 우리에게 물과 영양분 한 방울당 더 많은 작물을 안겨줄 수 있다. 

국가의 법으로 보호를 받는 브라질의 개암나무만 농민들이 옥수수 재배를 위해 아마존의 열대우림을 밀어낸 뒤에도 남아 있다. 산림파괴의 속도가 늦어졌음에도, 이 파라Pará 주의 북부에서는 지난 세월에 걸쳐 37% 남아 우려스럽다.




브라질 마투 그로수의 Nutribras 양돈농장에서, 모돈이 새끼 돼지를 깔아뭉개지 않도록 스톨로 격리되어 있다. 돼지농장은 엄청난 오염원이 될 수 있다. 평균 90kg이 돼지가 하루에 약 6kg의 분뇨를 생산한다. 하지만 Nutribras에서는 분뇨를 거름과 메탄 발전에 재활용한다.




소가 충격으로 정신을 잃은 뒤, 죽임을 당하고 피를 빼기 전 상공의 노면전차에 다리 하나로 매달려 있다. 세계에서 가장 큰 육류생산업체인 JBS는 브라질에 본사를 두고 있다.




노동자들이 소의 사체를 부위별로 분리하고 있다. JBS는 이를 전 세계로 수출한다. 발굽과 뼈는 갈아서 물고기 사료와 비료로 쓴다. 




브라질 Itapuí의 가금류 기업에서 시간당 1만8000마리의 닭을 가공한다. 미국과 중국에서만 매년 브라질보다 더 많은 닭을 먹는다. 1인당 약 100마리이다. 브라질의 가금류 생산은 2000~2012년 사이 2배가 되었다.




Nutribras는 사육하는 모든 돼지를 자체 시설에서 가공한다. 하루 약 1300마 꼴이다. 가축이 죽은 뒤, 깨끗이 하고 털을 벗기려고 끓는 물 속에 담근다. 




캘리포니아 그린필드 근처의 Bassetti 농장에서 노동자들이 미국과 아시아의 소매점에 출하하고자 셀러리를 수확하고 있다. 미국의 샐러드 그릇이라 불리는 살리나스 계곡은 관개를 위해 지하수에 의존하여, 현재의 가뭄이 계속될 경우 위험해질 수 있다.




매달 약 450만 마리의 닭이 브라질 Sidrolândia 근처의 이 공장에서 도축되어 용기에 담기고 잘리고 장식되고 포장된다. 그 부위는 전 세계로 운송된다. 날개와 발은 주로 중국으로, 다리는 일본으로 가슴살은 유럽으로 간다. 닭에 대한 세계의 식욕이 가금류 생산을 돼지고기나 소고기보다 훨씬 빠르게 성장하도록 하고 있다.




몬산토의 노스캐롤라이나 실험실에서, 옥수수의 성장을 기록하는 자동화된 사진 부스에 들어서고 있다. 이 기업은 물과 비료가 덜 필요한 옥수수와 콩의 특성을 개발하고자 하고 있다. 지금까지 생명공학이 회피하던 목표이다. 그러한 자원의 사용을 줄이는 것이 다가올 시기에 세계를 먹여살리는 핵심이다.





네 번째 단계: 식단을 전환하자

가 재배한 작물을 인간의 위장으로 넣으면 2050년까지 90억 명을 먹여살리기 더 쉬워진다. 오늘날 세계 작물 칼로리의 55%만 직접적으로 인간을 먹여살리는 데 쓰인다. 나머지는 가축을 먹이거나(약 36%) 생물연료와 산업 제품으로 전환된다(약 9%). 우리 대부분이 시설에서 사육된 가축의 고기와 유제품, 달걀을 소비하지만, 가축에게 먹이는 사료의 칼로리 가운데 일부만 우리가 소비하는 육류와 우유가 된다. 우리가 가축을 먹이는 곡물 100칼리로마다 우유로 40칼로리, 달걀로 22칼로리, 닭고기로 12칼로리, 돼지고기로 10칼로리, 소고기로 3칼로리만 새로 얻는다. 가축을 키우는 더 효율적인 방법을 찾고, 육식을 덜하는 식단으로 전환하면 —곡물을 먹인 소고기에서 닭고기와 돼지고기 또는 풀을 먹인 소고기로 전화하는 것만으로도— 전 세계에 걸쳐 상당한 양의 식량을 확보할 수 있게 만든다. 개발도상국의 사람들이 새로 발견된 번영이 주어지는 가까운 미래에 고기를 덜 먹을 가능성이 없기 때문에, 우리는 먼저 이미 육식을 많이 하는 식단에 초점을 맞출 수 있다. 생물연료에 식량작물의 사용을 줄이는 것도 식량 가용성을 강화하는 데 도움이 될 수 있다.

세계는 더 요구하고 있다

By 2050년 까지 세계의 인구는 35% 이상 증가할 가능성이 있다.

그 인구를 먹여살리기 위해, 작물 생산은 2배가 되어야 한다. 

왜? 개발도상국이 경제성장에 따라 더 많은 육류를 먹기 때문에 생산은 인구 성장을 훨씬 앞질러야 할 것이다.


다섯 번째 단계: 쓰레기를 줄이자

세계 식품 칼로리의 25%와 전체 식품 무게의 최대 50%가 소비되기 전에 상실되거나 버려진다고 추산된다. 선진국에서 쓰레기의 대부분은 가정과 식당 또는 슈퍼마켓에서 발생한다. 가난한 국가에서는 식량이 열악한 저장과 운송 때문에 농민과 시장 사이에서 사라지곤 한다. 선진국의 소비자들은 음식을 더 조금 나눠주고, 남은 음식을 먹고, 식당과 슈퍼마켓 등에서 쓰레기를 줄이는 방법을 개발하도록 독려하는 것과 같은 간단한 단계를 취함으로써 쓰레기를 줄일 수 있다. 식량 가용성을 증대시키기 위한 모든 선택지 가운데 쓰레기 줄이기가 가장 효율적인 방법 중 하나이다. 



종합하면, 이러한 다섯 단계는 세계의 식량 공급을 2배 이상으로 만들면서 환경에 대한 농업의 전 세계적 영향을 극적으로 줄일 수 있다. 그러나 그게 쉽지는 않을 것이다. 이 해결책은 사고방식의 커다란 전환을 필요로 한다. 역사의 대부분 동안 우린 농업에 더욱더, 더욱더, 더욱더 지나치게 열성적으로 나서면서 맹목적이 되었다. 더 많은 땅을 밀어버리고, 더 많은 작물을 재배하고, 더 많은 자원을 사용하게 된 것이다. 우린 더 많은 식량을 생산하는 일과 미래세대를 위해 지구를 유지하는 일 사이의 균형을 찾을 필요가 있다.

지금은 식량안보와 지구의 환경 보전에 대한 전례없는 과제에 직면하고 있는 중요한 순간이다. 좋은 소식은 우리가 이미 해야 할 일을 알고 있다는 사실이다. 우린 단지 그걸 실천할 방법을 강구하기만 하면 된다. 세계의 식량 문제를 해결하는 일은 우리 모두가 그릇에 놓이는 음식에 관해 더 사려 깊어지기를 요구한다. 우리는 우리의 음식과 그걸 기르는 농민, 그리고 우리의 음식과 우리를 지탱하는 땅과 유역 및 기후 사이의 연결해야 한다. 슈퍼마켓의 복도에서 식료품 카트를 조종하면서 행하는 우리의 선택이 우리의 미래를 결정하는 데 도움이 될 것이다. 


Jonathan Foley는 미네소타 대학의 환경연구소를 이끈다. Jim Richardson의 농민 사진은 농업을 기록하는 그의 최신 작품이다. George Steinmetz의 big-picture approach는 산업형 먹을거리의 경관을 보여준다.

록펠러 재단과 내셔날지오그래픽 회원들이 이 글에 관대한 지원을 해주었다.

모든 지도와 도표: Virginia W. Mason and Jason Treat, NGM Staff. 

A World Demanding More, 출처: David Tilman, University of Minnesota. 

Agriculture's Footprint, 출처: Roger LeB. Hooke, University of Maine. 

Maps, 출처: Global Landscapes Initiative, Institute on the Environment, University of Minnesota.





http://www.nationalgeographic.com/foodfeatures/feeding-9-billion/#top

728x90

'농담 > 농업 전반' 카테고리의 다른 글

양봉을 하고 싶다고요?  (0) 2014.05.31
미국의 미친 식량정책  (0) 2014.04.23
농업 붐이 일고 있는 미국  (0) 2014.01.02
농부가 세상을 바꾼다  (0) 2013.12.31
왜 수많은 인도의 농민들이 자살하는가  (0) 2013.12.09
728x90




John D. Liu is an environmental film maker, travelling the world exploring how countries follow natures systems to find solutions to droughts and flooding.

Ranging from China to Rwanda, communities are feeling the effects of a changing climate. Along with intensive agriculture that depletes the soils, farmers are losing livestock and crops due to excessive weather, lack of soil nutrients and poor landscapes.

Here John D. Liu explains how these communities have encorporated various techniques to work with the weather systems.

Terraces are built on hillsides to prevent soil being washed away, swales are created to capture water when it does rain so that crops have water through drought periods and natural vegetation has been allowed to grow back, especially in the ridges, aiding in carbon capture as well as keeping soil healthy and preventing it being lost.

In the Loess Plateau in China, communities are seeing an abundance of crops even though they are in the worst drought for decades. The soil has accumulated organic material from allowing vegetation to grow, which means it now holds nutrients and so holds moisture and carbon. These people have created these areas of living soil, actively producing carbon sequesting fields.

One man in the film explains it perfectly, "We have properly understood the miracles performed by trees."

As John D. Liu concludes, "Restoration can sequester carbon, reduce bio-diversity loss, mitigate against flooding, drought and famine, it can ensure food security for people who are now chronically hungry. Why don't we do this on a global scale?"

After the wettest winter on record in Britain, there is much that Europeans can learn from these approaches to absorb high levels of rainful, stabilise topsoil and prevent flooding. Dredging is like anti-biotics: It may (in some instances) solve a short term problem by sending water faster into the ocean, but it does not offer a long term solution, especially when high tides back up that water lower down stream. We need to look at whole ecosystems and what is happening on hillsides, not just at the crises points in the valleys.

Further resources

John D. Liu features in Green Gold - How can we regenerate large-scale damaged ecosystems?

What has nature ever done for us?

Permaculture: Pioneering Amazon rainforest regeneration

Cows Save The Planet: and other improbable ways of restoring soil to heal the earth

How to green the worlds deserts and reverse climate change: hope for the future

728x90
728x90




The NRCS’s National Soil Health and Sustainability Teamand Plant Materials Program are working together to improve our knowledge of using cover crop mixes to produce healthy soils.

Cover crops have the potential to provide multiple benefits in a cropping system. They prevent erosion, improve soil’s physical and biological properties, supply nutrients, suppress weeds, improve the availability of soil water, and break pest cycles along with various other benefits. The species of cover crop selected along with its management determine the benefits and returns.

Cover Crop Termination Guidelines

The termination guidelines provides information on termination of cover crops on non-irrigated cropland. They were created by NRCS, Risk Management Agency (RMA), Farm Service Agency (FSA), and other public and private stakeholders to address concerns about cover crops’ impact on crop insurance. Click here for termination guidelines.

In the News

Radish cover crops control weeds in wild seed production Exit to disclaimer for external linksWild grass and flower seed growers can better control weeds by planting radishes as a cover crop prior to seeding, results of a trial at the Aberdeen Plant Materials Center show.

Cover Crop Plant Guides

The following plant guides describe the characteristics of some commonly used cover crops. They provide assistance in selecting appropriate cover crops, when and how to plant and when to terminate or incorporate the plant into the soil.

These documents require Acrobat Reader.

Additional Resources

If you encounter any problems with the files provided on this page, please contact the Plant Materials ProgramWebmaster at 520-292-2999 Ext. 112.

728x90
728x90


Interest in urban agriculture has grown as residents seek to revitalize cities and improve access to fresh produce. Investigators are figuring out how to maximize the benefits of gardening while minimizing the risks of contaminated urban soils.




Author Rebecca Kessler is all too familiar with the difficulties and uncertainties of cleaning up dirty urban soil, having embarked on a multiyear project to convert a paved parking lot at her Providence, Rhode Island, home into a beautiful and fruitful garden.




In 2012, 35% of U.S. households grew food, spending $3.3 billion in the process, up from 31% of households spending $2.5 billion in 2008. An estimated 1 million households participated in community gardens in 2008.




On a bright late-September afternoon, Mary Bleach showed visitors around the community garden near her apartment in Boston’s Dorchester neighborhood. The sunflowers were nodding their heads in acquiescence to fall, but rust-colored marigolds, pink cosmos, and fuchsia morning glories were still abloom, and a few lazy bees hit them up for nectar. Kale, collards, okra, callaloo (a relative of spinach), tomatoes, onions, herbs, eggplants, beans, peanut plants, and a squash vine with leaves bigger than Bleach’s head entangling 15 feet of chain-link fence—all were still soaking up the fall sun’s rays. Bleach said she lives out of the garden in summer, and she freezes enough to eat well into winter, too.

All this vegetable profusion would soon be gone. Winter was coming, yes, but also heavy machinery to scrape the land level and to haul away the ramshackle chain-link fence and the timbers dividing one plot from another. After more than 25 years, the garden at the corner of Lucerne and Balsam streets was slated for a makeover: handicapped-accessible concrete paths, sturdy fencing, new water service, and reestablished plots with granite dividers.

Boston University toxicologist Wendy Heiger-Bernays and three students had come to check out the site in preparation for a detailed soil contaminant study that would inform the renovation. If the garden’s soil were anything like other Boston soils, it would contain elevated levels of lead—in Dorchester yards, 1,500 ppm of lead is common.1 In the worst-case scenario, much of the garden’s soil would have to be removed and clean topsoil and compost trucked in.

And those old timber plot dividers? They were pressure-treated lumber of a vintage that was preserved using chromated copper arsenate—although when they were installed, they were considered a safe alternative to creosote-soaked railroad ties, another common landscaping material. In a 2009 study of three other Boston community gardens, Heiger-Bernays and colleagues showed that arsenic can leach from pressure-treated lumber into garden soil, and that polycyclic aromatic hydrocarbons (PAHs) can leach from old railroad ties.2

Heiger-Bernays and her students eyeballed the garden’s perimeter. The adjacent houses were Boston’s signature triple-deckers, probably around a century old and layered in old lead-based paint. Long ago, similar houses stood where the garden now grew. Lead-based paint, asbestos, coal ash, and automotive oil from them could still haunt the garden soil. The lot had stood weedy and trash-strewn for years before Bleach and other neighbors reclaimed it in the 1980s.

The students bagged soil samples near the timbers, along the fenceline adjacent to the houses, and in plots throughout the garden. They would take these samples back to Heiger-Bernays’s lab for analysis.

Over the years the garden has been tested for lead and some clean soil brought in. Recently, the city has brought in truckloads of municipal compost almost every year. This black gold not only supplies nutrients to crops, but also dilutes contaminants and binds them to soil particles, reducing the risk of human exposure.3,4

Over the past decade, the garden’s owner, Boston Natural Areas Network, has systematically renovated select community gardens to further improve and remediate soil as well as to enhance the gardens’ beauty, accessibility, and permanence with high-quality infrastructure. It’s an effort to make growing food in what Heiger-Bernays calls “non-pristine” city soils as safe as possible, so that the many delights of gardening can flourish in the heart of the concrete jungle. “It’s about trying to really maximize those benefits while recognizing and minimizing the risks,” says Heiger-Bernays.

Boston is not alone in its efforts. In cities around the globe, gardeners and farmers are digging into backyards and vacant lots, replacing blighted eyesores with lush, productive vegetation. But as in Boston, these other urban soils are often heavily contaminated, prompting questions about potential health consequences of this supposedly wholesome activity. And while alternative growing methods such as rooftop gardens and hydroponics duck soil contamination issues, they tend to be more expensive and are unlikely to replace gardening in the ground any time soon, sources say.

In the United States, no regulations specifically govern contaminants in soils used for food production, and testing for them can be prohibitively expensive. Experts disagree on the severity of the problem, jurisdictional standards conflict, and advice about how to remedy or work around urban soils has been fragmented and all too often confusing. But recent interest in urban agriculture as a way to green cities, grow jobs, and help quench urban food deserts is bringing new urgency to the research—and a few new solutions.



Often a site’s history provides a clue to what contaminants may linger in the soil. Former parking lots and car washes often carry metals, PAHs, petroleum products, solvents, or surfactants. Demolished commercial or industrial buildings may leave behind asbestos, PCBs, petroleum and oil, or lead-based paint chips, dust, or debris. High-traffic roadways have a legacy of lead and PAHs from vehicle exhaust. Former parks and lands adjacent to railroad rights-of-way can bear pesticide residues. 



Measuring Soil Health

City gardens were not unusual during early U.S. history, but after World War II they largely disappeared. A gardening revival took root amid the urban decay of the middle and late twentieth century. Although data capturing the trend are elusive, food gardening in general is increasing.2 In 2012, 35% of U.S. households grew food, spending $3.3 billion in the process, up from 31% of households spending $2.5 billion in 2008, according to the National Gardening Association.5,6 One million households participated in community gardens in 2008, according to the association’s most recent estimate.7

An awareness that urban gardeners may be digging into some pretty nasty soil emerged along with the community garden movement in the late 1970s.8,9 A 1983 study identified elevated levels of lead, cadmium, copper, nickel, and zinc in Baltimore inner-city garden soils.10 While some common contaminants occur naturally in soil, the levels “were just so high compared to soils found in agricultural areas that it became very clear that these were problematic soils,” says Howard Mielke, a research professor at Tulane University School of Medicine who led the study.

Other studies followed, finding heavily contaminated urban yards and gardens across the United States.1,11,12 Contaminants tend to concentrate in low-income neighborhoods with large minority populations—although rural areas are not immune.12,13,14

Lead from old vehicle exhaust, paint, and past industrial activities is the most widely documented pollutant in urban soils. The U.S. Environmental Protection Agency (EPA) estimates that 23% of privately owned U.S. homes built before 1980 have soil lead levels exceeding 400 ppm—the current hazard standard for bare soil in children’s play areas—and that 8% exceed 2,000 ppm.15 PAHs, emitted when carbon-containing materials such as wood and gasoline are incompletely burned, are also quite common.

Often a site’s history provides a clue to the contaminants that linger in the soil. Former parking lots and car washes often carry metals, PAHs, petroleum products, solvents, or surfactants. Demolished commercial or industrial buildings may leave behind asbestos, polychlorinated biphenyls, petroleum products, or lead-based paint chips, dust, or debris. High-traffic roadways have a legacy of lead and PAHs from vehicle exhaust. Former parks and lands adjacent to railroad rights-of-way can bear pesticide residues.4

Gardeners themselves sometimes introduce potentially dangerous chemicals. Heiger-Bernays is looking into accounts of rising pesticide use in some Boston community gardens, including the use of restricted chemicals, in spite of rules prohibiting them. Biochar—partially burned organic matter, such as charcoal—is another potentially problematic additive. It’s an ancient soil amendment now being touted as a way to combat climate change by sequestering carbon underground.16 Yet it’s chock-full of PAHs, Heiger-Bernays points out, some of which may remain more bioavailable than others.17

Mielke and his colleagues recently created a detailed map of soil lead and children’s blood lead concentrations across the city of New Orleans, highlighting a strong association between the two.13 Mielke says similar studies could and should be done nationally for a host of contaminants. “It’s amazing how little mapping is taking place,” he says. “If we had a map of every city, we’d have a vision of what needs to be done.”

Unlike the gardeners at the corner of Lucerne and Balsam, most people wondering what might be lurking in their soil don’t have a team of environmental scientists standing by to help. Affordable soil testing is often limited to laboratories affiliated with the U.S. Department of Agriculture’s Cooperative Extension System, which measure nutrients, acidity, organic content, and occasionally lead or other metals—but rarely other potential contaminants.18 If they do, the costs add up quickly. For example, Pennsylvania State University’s College of Agricultural Sciences charges $65 to test one sample for cadmium, copper, lead, nickel, chromium, and zinc. Add arsenic, mercury, molybdenum, and selenium, and the price rises to $160. PCBs cost another $80.19 PAHs are not on Penn State’s menu, but elsewhere testing for the 16 PAHs regulated by the EPA costs $250, says Ganga Hettiarachchi, an environmental chemist at Kansas State University.

Yet testing a single sample is rarely sufficient because contaminants occur patchily, says Hettiarachchi, who is studying garden soil contaminants in seven cities and food crops’ absorption of them under various conditions. For instance, lead is often concentrated near foundations of old houses and surface runoff pathways in residential yards, but hot spots can turn up anywhere an old painted board was discarded, say, or a long-gone fruit tree was sprayed with lead-arsenate pesticides.1,20

Furthermore, a recent Brown University study showed that lead contamination can spread farther and penetrate deeper than expected. Soil data from Rhode Island yards showed that lead-based paint spread more than 400 feet from nearby water towers, and often penetrated more than 12 inches below the soil surface.14 “The heterogeneity of contaminant distribution is one of the biggest challenges,” says Hettiarachchi. “You cannot actually afford to run so many samples.”

Gardeners often wind up testing for lead only, if anything, which Heiger-Bernays says can serve as a sentinel signaling the presence of other contaminants. She recommends gardeners target their testing to areas most likely to be contaminated, such as near foundations or old painted structures, and they can keep costs down by combining several samples taken throughout a key planting area into a single sample for testing. Or, she says, skip the testing and just proceed as though the soil were contaminated.18



Testing a single soil sample rarely tells the whole story of contamination in a yard or garden plot. For instance, lead is often concentrated near foundations of old houses and surface runoff pathways in residential yards, but hot spots can turn up anywhere.



Exposures and Health Impacts

Exposure to pollutants while gardening comes mainly from accidentally ingesting soil or inhaling contaminated dust, either while gardening or after tracking it home on clothing, shoes, and tools, according to interim guidelines for safe urban gardening from the EPA.4 The risk is greatest for small children, who not only are most vulnerable to toxicants but also gleefully put dirty fingers directly into their mouths.

Produce itself tends to be relatively safe, provided it wasn’t grown in heavily contaminated soil and is washed before eating.4 Most food crops tend not to absorb contaminants, and what little they do absorb generally stays in the roots.4,21 (One notable exception is rice, which absorbs arsenic unusually well.22) Certain contaminants, like zinc, kill plants before they reach concentrations dangerous to people, says Rufus Chaney, a research agronomist with the U.S. Department of Agriculture.

As urban agriculture flourishes and diversifies, however, at least one new exposure pathway has come to light: Health officials recently reported elevated lead levels in the edible portion of eggs from chickens raised in New York City community gardens.23 These chickens had been kept in areas with maximum soil lead concentrations of 600 ppm. The eggs were not likely to pose a health risk, the authors say, although eggs from chickens living on higher-lead soils possibly could. But overall, Chaney says, concerns focus on the ingestion of soil, not food.

Experts interviewed for this story could not recall a single case where illness had been traced directly to contaminated garden soil—a connection that in any case would be very difficult to prove. Yet for lead and other contaminants, garden soil may join other sources of exposure that add up for kids already at high risk, says Heiger-Bernays. “We know that urban centers like … Dorchester have these really recalcitrant elevated blood lead [levels] in some of the kids,” she says. “We figure that by adjusting some of the soil lead, we’ll be decreasing their overall exposure, because the lead in the soils ends up as lead in the dust in the home.”

Elevated blood lead levels in children are strongly linked with cognitive, motor, behavioral, and physical problems, including an increased risk of poor school performance and criminal behavior.24,25,26,27 A parallel body of research, much by Mielke and colleagues, shows a strong relationship between elevated soil lead and elevated blood lead in children.13,28,29,30,31,32 And while a 1998 pooled analysis of 12 studies found that lead-contaminated floor dust was a greater contributor to children’s blood lead levels than lead-contaminated soil, it nevertheless predicted a geometric mean blood lead level of 3.5 µg/dL in children living in homes with soil lead levels of 500 ppm when floor dust lead levels were very low.33 By comparison, the Centers for Disease Control and Prevention (CDC) currently considers 5 µg/dL the threshold for “elevated” blood lead, while pointing out that “no safe blood lead level in children has been identified.”34

But experts debate just how concerned gardeners should be about lead. The current EPA hazard standard of 400 ppm for bare soil in children’s play areas is generally viewed as the green light for gardening freely in unremediated soil.35 This standard is based on the EPA’s Integrated Exposure Uptake Biokinetic (IEUBK) model, which assesses the risk of elevated blood lead in a young child exposed to environmental lead from multiple sources. This model assumes that 30% of the lead in soil and dust ingested by children under age 7 is bioavailable—that is, it is absorbed into their bloodstream.36 But the IEUBK defines elevated blood lead as 10 µg/dL, twice the CDC’s threshold.

Individual states including Massachusetts, Minnesota, and California have established lower soil lead standards to protect children, and many European nations regulate soil lead at 100 ppm.37 (On average, the values that the EPA and other U.S. authorities use to regulate lead, cadmium, arsenic, nickel, chromium, mercury, copper, and zinc in soil are 10 times higher than elsewhere.37) “Four hundred [ppm] doesn’t cut it,” Heiger-Bernays says.

In a new document intended as a practical guide to safe urban gardening, she advises against gardening directly in soil with more than 200 ppm lead, and even recommends adding clean amendments to soil with more than 100 ppm lead.18 She arrived at those low action levels by balancing what she says is a strictly risk-based lead concentration of 2–50 ppm with consideration for what gardeners can realistically achieve. Even so, the levels are low enough to be “almost heretic” and are sure to get her lambasted by regulators, she says.

But Chaney says the EPA standard of 400 ppm is sufficiently protective for gardening. He points to his own unpublished research indicating that less than 5–10% of the lead in urban garden soil is bioavailable, compared with the 30% assumed by the IEUBK model.38 By contrast, the lead in unamended soil at contaminated mining sites can average an estimated 90% bioaccessibility.39

Garden soils may be safer than other urban soils because they receive regular additions of phosphorus through compost and other amendments, which speeds up the formation of pyromorphate, an insoluble compound of lead, say Hettiarachchi and Chaney. 40,41,42,43 In a forthcoming paper, Hettiarachchi and colleagues found that adding compost to soil reduced the estimated bioavailability of lead by 20–30%, compared with unamended soil.3 Chaney also points out that humans take up far less lead when they ingest it within a few hours of a meal than when they ingest it on an empty stomach.44,45

A considerable amount of research has gone into developing a cheap and easy test for lead bioavailability as part of a quest for a sure-fire way to improve soil safety by amending it, rather than replacing it.42 Yet for now such tests remain under development and confined to research laboratories, so there’s no way for a gardener to know for sure whether his or her high-lead soil might actually be fairly safe.



for gardeners, exposure to pollutants comes mainly from accidentally ingesting soil or inhaling contaminated dust, either while gardening or after tracking it home on clothing, shoes, and tools. Produce itself is relatively safe, provided it hasn’t been grown in highly contaminated soil and that it’s washed before eating. Typical garden fare tends not to absorb contaminants, and what little is absorbed doesn’t travel far.



Cleaning the Soil

The most thorough solution to cleaning up a garden is to remove the contaminated soil, then lay down a special fabric barrier topped with clean soil.4 But that’s a huge undertaking that can cost thousands of dollars, even for a small yard, putting it out of reach for most gardeners.46

Simply installing the barrier fabric and new soil on top of the old is a more feasible option. So is building raised beds filled with clean soil—especially for root crops—and covering any exposed contaminated soil with mulch or grass. Less problematic soils can be amended by mixing in plenty of compost to dilute contaminants and bind them to soil particles. Gardeners can further reduce their exposure by peeling root crops, removing the outer leaves of leafy crops, washing their produce and hands before eating, and leaving dirty garden gear outside.4

Although it can be tricky, ideally gardeners should also test incoming compost or soil because there’s little guarantee it will be much better than the old soil, says Heiger-Bernays. She and her students have found that few authorities either enforce rules governing what goes into compost or test the final product, although some voluntary standards do exist, such as the U.S. Composting Council’s Seal of Testing Assurance.47

Furthermore, contaminated compost is not as rare as a gardener might hope. For example, in 2011 Heiger-Bernays documented a spike in lead levels in Boston’s municipal compost to around 350 ppm. As a result, the city temporarily stopped delivering its cherished compost to Boston gardens. The cause of the spike was never confirmed, although sources speculate that old painted wood may have been tossed into the compost stream, or leaf blowers may have kicked up old paint particles around house foundations. (Boston’s new composting contractor, City Soil, appears to have resolved the problem.) Boston compost also had high levels of PAHs when the city added street sweepings to its mix, a practice it has since abandoned, says Heiger-Bernays. And since 2000, plant-killing compost has surfaced in more than a dozen states after the introduction of pyridine and pyrimidine carboxylic acids, persistent herbicides that do not break down during the composting process.48,49

To top it off, there is also some evidence that fresh, clean soil can pick up contamination from the garden site. For example, raised beds may become contaminated with high-lead soil blown in from the surrounding garden.50

Boston is a gardening hub, with around 175 community gardens in which some 3,500 families grow produce worth $1.5 million each year.51 The city spends around $300,000 annually to build new community gardens or renovate old ones. This figure is matched by private and foundation support through organizations such as Boston Natural Areas Network. Given that commitment, the city’s recent embrace of commercial farming as a way to bring employment, affordable produce, and an economic boost to the inner city seemed a natural step. New zoning regulations to make space for farms within city limits are slated for signing by the outgoing mayor, Thomas M. Menino, in December 2013.52

A provision in the new regulations specifically addressing soil contamination sets Boston apart from most other cities bitten by the urban ag bug.53 “Due to Boston’s industrial history and its archaeology and the oldness of the houses, there was always a burden of heavy metal concentrations in the soil. So we felt it was necessary that people farm wisely to protect not only themselves but anyone else from the toxic metals,” says Thomas Plant, director of special projects at the Boston Public Health Commission, which developed the soil contamination provision.

One vocal councilman wanted the city to require a professional environmental site assessment with extensive soil testing and replacement of all contaminated soil on city-owned lots used for farming. This costly requirement “would kill urban agriculture in the city of Boston,” says Plant. The final regulations give would-be farmers the more practical option of simply assuming the soil is polluted, covering it with barrier fabric, and trucking in clean soil to grow in. Most farmers are expected to take that route.

Soon after their September visit to the garden at Lucerne and Balsam, Heiger-Bernays’s students finished testing the soil samples. They were pleased to find that lead maxed out at 220 ppm, even near the old houses. Samples taken from a pile of the new city compost had low lead, too, at 120 ppm. Levels of arsenic and other metals were also low or nondetectable throughout the garden.

“That was a really nice surprise,” says Heiger-Bernays, who has identified lead levels up to 3,000 ppm in other community gardens bordered by lead-painted homes. She chalked up the healthy soil to Bleach and her fellow gardeners diligently applying compost, year after year. Further testing and research into the site’s history will tell more, but for now it seemed the renovators would need only to replace the soil at select spots and add more compost to keep the garden at Lucerne and Balsam safe for growing by any measure.



Garden soils may be safer than other urban soils because they receive regular additions of phosphorus through compost and other amendments, which speeds up the formation of pyromorphate, an insoluble compound of lead. By contrast, the lead in unamended soil at contaminated mining sites can be 90% bioaccessible.



BEST MANAGEMENT PRACTICES FOR URBAN GARDENS

Build your garden away from existing roads and railways, or build a hedge or fence to reduce windblown contamination from mobile sources and busy streets.

Cover existing soil and walkways with mulch, landscape fabric, stones, or bricks.

Use mulch in your garden beds to reduce dust and soil splash, reduce weed establishment, regulate soil temperature and moisture, and add organic matter.

Use soil amendments to maintain neutral pH, add organic matter, and improve soil structure.

Add topsoil or clean fill from certified soil sources. Your state or local environmental program, extension service, or nursery may be able to recommended safe sources for soil and fill.

Build raised beds or container gardens. Raised beds can be made by simply mounding soil into windrows or by building containers. Sided beds can be made from wood, synthetic wood, stone, concrete block, brick, or naturally rot-resistant woods such as cedar and redwood.

Your state or local city agency may recommend using a water-permeable fabric cover or geotextile as the bottom layer of your raised beds to further reduce exposure to soils of concern.

Gardener’s bootsPractice good habits:

  • Wear gloves, and wash hands after gardening and before eating.
  • Take care not to track dirt from the garden into the house.
  • Wash produce before storing or eating, and teach kids to do so, too.
  • Peel root crops, and remove outer leaves of leafy vegetables.

Adapted from: U.S. EPA (2011)4

Photo: © I Love Images/Corbis


References

1. Hynes PH, et al. Dorchester lead-safe yard project: a pilot program to demonstrate low-cost, on-site techniques to reduce exposure to lead-contaminated soil. J Urban Health 78(1):199–211 (2001); http://dx.doi.org/10.1093/jurban/78.1.199.

2. Heiger-Bernays W, et al. Characterization and low-cost remediation of soils contaminated by timbers in community gardens. Int J Soil Sediment Water 2(3):5 (2009); http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3146259/.

3. Attanayake CP, et al. Field evaluations on soil plant transfer of lead from an urban garden soil. J Environ Qual; doi:10.2134/jeq2013.07.0273 [online 25 November 2013]. Available:https://www.agronomy.org/publications/jeq/first-look.

4. EPA. Brownfields and Urban Agriculture: Interim Guidelines for Safe Gardening Practices. Chicago, IL:Region 5 Superfund Division, U.S. Environmental Protection Agency (Summer 2011). Available: http://www.epa.gov/swerosps/bf/urbanag/p​df/bf_urban_ag.pdf [accessed 18 November 2013].

5. NGA. Garden Market Research: 2013 National Gardening Survey. Williston, VT:National Gardening Association (2013) Available: http://www.gardenresearch.com/index.php?​q=show&id=2369.

6. NGA. 2009 National Gardening Survey. South Burlington, VT:National Gardening Association (2009).

7. The Impact of Home and Community Gardening In America. South Burlington, VT: National Gardening Association (2009). Available: http://goo.gl/aD70Me [accessed 18 November 2013].

8. Chaney RL, et al. The potential for heavy metal exposure from urban gardens and soils. In: Preer JR, ed. Symposium on Heavy Metals in Urban Gardens: Proceedings. Washington, DC:University of the District of Columbia Extension Service (1984). Available:http://indytilth.org/Links/Chaney_Exposu​re.pdf [accessed 18 November 2013].

9. Spittler TM, Feder WA. A study of soil contamination and plant lead uptake in Boston urban gardens. Commun Soil Sci Plant Anal 10(9):1195–1210 (1979); http://goo.gl/MxizPr.

10. Mielke HW, et al. Lead concentrations in inner-city soils as a factor in the child lead problem. Am J Public Health 73(12):1366–1369 (1983);http://dx.doi.org/10.2105/AJPH.73.12.1366.

11. Mielke HW, et al. PAHs and metals in the soils of inner-city and suburban New Orleans, Louisiana, USA. Environ Toxicol Pharmacol 18(3):243–247 (2004);http://dx.doi.org/10.1016/j.etap.2003.11.011.

12. Wu J, et al. Spatial analysis of bioavailable soil lead concentrations in Los Angeles, California. Environ Res 110(4):309–317 (2010);http://dx.doi.org/10.1016/j.envres.2010.02.004.

13. Mielke HW, et al. Environmental and health disparities in residential communities of New Orleans: the need for soil lead intervention to advance primary prevention. Environ Internat 51:73–81 (2013); http://dx.doi.org/10.1016/j.envint.2012.10.013.

14. Thompson MR, et al. Practice-based evidence informs environmental health policy and regulation: a case study of residential lead-soil contamination in Rhode Island. Sci Total Environ (468–469):514–522 (2014); http://dx.doi.org/10.1016/j.scitotenv.2013.07.094.

15. EPA. Distribution of Soil Lead in the Nation’s Housing Stock. Washington, DC: Office of Pollution Prevention and Toxics, U.S. Environmental Protection Agency (May 1996). Available: http://www2.epa.gov/sites/production/fil​es/documents/Distribution_of_Soil_Lead.p​df [accessed 18 November 2013].

16. Tenenbaum DJ. Biochar: carbon mitigation from the ground up. Environ Health Perspect 117(2):A70–A73 (2009); http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649247/

17. Hale SE, et al. Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environ Sci Technol 46(5):2830–2838 (2012);http://dx.doi.org/10.1021/es203984k.

18. Barrett P, et al. Best Management Practices for Soil Use in Urban and Non-pristine Gardens Minimizing Health Risks While Maximizing Health Benefits. Boston, MA:Department of Environmental Health, Boston University School of Public Health. Pre-publication (2013).

19. Agricultural Analytical Services Lab [website]. University Park, PA:College of Agricultural Sciences, The Pennsylvania State University (fees effective 1 July 2012). Available:http://www.aasl.psu.edu/EnvirSoilTests.H​TM [accessed 18 November 2013].

20. Wolz S, et al. Residential arsenic and lead levels in an agricultural community with a history of lead arsenate use. Environ Res 93(3):293–300 (2003);http://dx.doi.org/10.1016/S0013-9351(03)00064-1.

21. Finster ME, et al. Lead levels of edibles grown in contaminated residential soils: a field survey. Sci Total Environ 320(2–3):245–257 (2004);http://dx.doi.org/10.1016/j.scitotenv.2003.08.009.

22. Zhao F-J, et al. Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559 (2010);http://dx.doi.org/10.1146/annurev-arplant-042809-112152.

23. Spliethoff HM, et al. Lead in New York City community garden chicken eggs: influential factors and health implications [accepted for publication]. Environ Geochem Health; doi:10.1007/s10653-013-9586-z.

24. Binns HJ, et al. Interpreting and managing blood lead levels of less than 10 µg/dL in children and reducing childhood exposure to lead: recommendations of the Centers for Disease Control and Prevention Advisory Committee on Childhood Lead Poisoning Prevention. Pediatrics 120(5):e1285–e1298 (2007); http://dx.doi.org/10.1542/peds.2005-1770.

25. Zahran S, et al. Children’s blood lead and standardized test performance response as indicators of neurotoxicity in metropolitan New Orleans elementary schools. NeuroToxicology 30(6):888–897 (2009); http://dx.doi.org/10.1016/j.neuro.2009.07.017.

26. Nevin R. Understanding international crime trends: the legacy of preschool lead exposure. Environ Res 104(3):315–336 (2007);http://dx.doi.org/10.1016/j.envres.2007.02.008.

27. Mielke HW, Zahran S. The urban rise and fall of air lead (Pb) and the latent surge and retreat of societal violence. Environ Internat 43:48–55 (2012);http://dx.doi.org/10.1016/j.envint.2012.03.005.

28. EPA. Air Quality Criteria for Lead (2006) Final Report: Volume I of II. Research Triangle Park, NC:National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency (October 2006). Available:http://cfpub.epa.gov/ncea/cfm/recordispl​ay.cfm?deid=158823#Download [accessed 18 November 2013].

29. Mielke HW, et al. Associations between soil lead and childhood blood lead in urban New Orleans and rural Lafourche Parish of Louisiana. Environ Health Perspect 105(9):950−954 (1997); http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1470368/.

30. Mielke HW, Reagan PL. Soil is an important pathway of human lead exposure. Environ Health Perspect 106(suppl 1):217–229 (1998);http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1533263/.

31. Zahran S, et al. Linking source and effect: resuspended soil lead, air lead, and children’s blood lead levels in Detroit, Michigan. Environ Sci Technol 47(6):2839–2845 (2013);http://dx.doi.org/10.1021/es303854c.

32. Laidlaw MAS, et al. Seasonality and children’s blood lead levels: developing a predictive model using climatic variables and blood lead data from Indianapolis, Indiana, Syracuse, New York, and New Orleans, Louisiana (USA). Environ Health Perspect 113(6):793–800 (2005); http://dx.doi.org/10.1289/ehp.7759.

33. Lanphear BP, et al. The contribution of lead-contaminated house dust and residential soil to children’s blood lead levels: a pooled analysis of 12 epidemiologic studies. Environ Res 79(1):51–68 (1998); http://dx.doi.org/10.1006/enrs.1998.3859.

34. CDC. CDC Response to Advisory Committee on Childhood Lead Poisoning Prevention Recommendations in “Low Level Lead Exposure Harms Children: A Renewed Call for Primary Prevention.” Atlanta, GA:U.S. Centers for Disease Control and Prevention (updated 7 June 2012). Available: http://goo.gl/jKOO35 [accessed 18 November 2013].

35. EPA. Lead: Identification of Dangerous Levels of Lead: Final Rule. 40 CFR Part 745 Fed Reg 66(4):1206–1240 (2001); http://www.epa.gov/fedrgstr/EPA-TOX/2001/January/Day-05/t84.pdf.

36. EPA. Short Sheet: Overview of the IEUBK Model for Lead in Children. EPA #PB 99-9635-8. Washington, DC:Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency (August 2002). Available: http://epa.gov/superfund/lead/products/f​actsht5.pdf [accessed 18 November 2013].

37. Jennings AA. Analysis of worldwide regulatory guidance values for the most commonly regulated elemental surface soil contamination. J Environ Manage 118:72–95 (2013);http://dx.doi.org/10.1016/j.jenvman.2012.12.032.

38. Zia MH, et al. In vitro and in vivo approaches for the measurement of oral bioavailability of lead (Pb) in contaminated soils: a review. Environ Pollut 159(10):2320–7 (2011);http://dx.doi.org/10.1016/j.envpol.2011.04.043.

39. EPA. Estimation of Relative Bioavailability of Lead in Soil and Soil-Like Materials Using In Vivo and In Vitro Methods. Washington, DC:Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency (May 2007). Available:http://www.epa.gov/superfund/bioavailability/lead_tsd_main.pdf [accessed 18 November 2013].

40. Hettiarachchi GM, Pierzynski GM. Soil lead bioavailability and in situ remediation of lead-contaminated soils: a review. Environ Prog 23(1):78–93 (2004);http://dx.doi.org/10.1002/ep.10004.

41. Yang J, et al. Lead immobilization using phosphoric acid in a smelter-contaminated urban soil. Environ Sci Technol 35(17):3553–3559 (2001); http://dx.doi.org/10.1021/es001770d.

42. Ryan JA, et al. Reducing children’s risk from lead in soil: a field experiment in Joplin, Mo., demonstrates alternatives to traditional cleanups. Environ Sci Technol 38(1):18A–24A (2004); http://dx.doi.org/10.1021/es040337r.

43. Scheckel KG, et al. Amending soils with phosphate as means to mitigate soil lead hazard: a critical review of the state of the science. J Toxicol Environ Health Part B: Crit Rev 16(6):337–380 (2013); http://dx.doi.org/10.1080/10937404.2013.825216.

44. James HM, et al. Effects of meals and meal times on uptake of lead from the gastrointestinal tract in humans. Hum Exp Toxicol 4(4):401–407 (1985);http://dx.doi.org/10.1177/096032718500400406.

45. Maddaloni M, et al. Bioavailability of soilborne lead in adults, by stable isotope dilution. Environ Health Perspect 106(suppl 6):1589–1594 (1998);http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1533442/.

46. Dixon SL, et al. The effectiveness of low-cost soil treatments to reduce soil and dust lead hazards: the Boston lead safe yards low cost lead in soil treatment, demonstration and evaluation. Environ Res 102(1):113–124 (2006);http://dx.doi.org/10.1016/j.envres.2006.01.006.

47. USCC. Seal of Testing Assurance (STA) [website]. Bethesda, MD:U.S. Composting Council (2010). Available: http://compostingcouncil.org/seal-of-tes​ting-assurance/ [accessed 18 November 2013].

48. Michel FC, Doohan D. Ohio State University Extension Fact Sheet: Clopyralid and Other Pesticides in Composts. AEX-714-03. Columbus, OH:Food, Agricultural and Biological Engineering, The Ohio State University (undated). Available: http://ohioline.osu.edu/aex-fact/0714.ht​ml [accessed 18 November 2013].

49. USCC. USCC Position: Persistent Herbicides. Bethesda, MD:U.S. Composting Council (2013). Available: http://goo.gl/3F6uLl [accessed 18 November 2013].

50. Clark HF, et al. Urban gardens: lead exposure, recontamination mechanisms, and implications for remediation design. Environ Res 107(3):312–319 (2008);http://dx.doi.org/10.1016/j.envres.2008.03.003.

51. City of Boston. Open Space Plan 2008–2014. Section 5: Inventory of Lands of Conservation and Recreation Interest (Open Space Inventory). Boston, MA:City of Boston (2008). Available: http://goo.gl/CqXz5M [accessed 18 November 2013].

52. City of Boston. Article 89: Urban Agriculture and Soil Safety Guidelines for Commercial Urban Farming. Draft. Boston, MA:City of Boston (22 August 2013). Available:http://goo.gl/5Ng3yN [accessed 18 November 2013].

53. City of Boston. Article 89-7: Soil Safety Guidelines for Commercial Urban Farming. Boston, MA:City of Boston. Available: http://goo.gl/zZzm3w [accessed 18 November 2013].

728x90
728x90

기사의 제목과 달리 석회 같은 중화제를 사용하여 토양의 산성도만 낮추었을 뿐, 정작 중요한 토양의 유기물 함량은 2%대로 좋은 토양이라고 부르는 5%대에 절반 수준밖에 안 된다. 이래서야 계속해서 화학비료에 의존할 수밖에 없지 않을까. 그런데도 토양 비옥도가 양호하다는 건 기자가 내용을 잘 모르고 불러주는 대로만 받아 적은 결과가 아닐까 한다.

---------


홍성·예산=뉴시스】유효상 기자 = 충남도 농업기술원(원장 김영수)은 도내 150곳의 밭토양을 채취해 토양분석 변화를 조사한 결과, 주요 토양성분이 대부분 적정수준을 보이는 등 토양비옥도가 양호해진 것으로 나타났다고 21일 밝혔다.


이번 토양분석 변화 조사는 밭토양의 환경변화를 분석하기 위해 4년 주기로 실시되는 것으로, 올해 4월부터 9월까지 도내 150곳의 밭토양 표본을 채취해 산도, 염류농도 등을 분석하는 방식으로 이뤄졌다.

조사결과 농경지의 유용미생물 활성에 따른 비료성분 흡수와 생육에 영향을 주는 중요 지표성분으로, 밭토양에서 가장 중요하게 취급되고 있는 토양산도(pH)는 6.2로 적정범위(6.0~6.5)에 포함된 것으로 나타났다.

또 밭토양을 계량하기 위해 사용되던 석회소요량 변화의 경우, 2009년에는 ㏊당 2070㎏이었던 것이 올해 980㎏으로 조사돼 석회사용량을 줄여야 할 정도로 토양비옥도가 상당히 개선된 것으로 조사됐다.

이외 부분에서는 토양 염류농도(0.66dS/m)와 유기물함량(2.3%)을 비롯해 칼륨, 마그네슘도 적정범위 수준을 유지하고 있는 것으로 나타났다. 

다만 칼슘의 경우 6.8cmol+/㎏로 적정범위(0.5~0.6) 보다 조금 높았고, 인산함량도 적정수준 500㎎/㎏ 보다 높은 751㎎/㎏ 이었지만, 2009년 보다 4㎎/㎏ 감소한 것으로 집계됐다. 

도 농업기술원 농업환경연구과 최문태 농업연구사는 “밭토양의 경우 노지상태로 기상환경의 영향을 많이 받기 때문에 과잉성분에 대해 염려할 수준은 아니다”라며 “토양 비옥도를 높이기 위해서는 적정량의 비료와 퇴비사용이 중요한 만큼 작물 파종이나 정식 전에 해당 시군농업기술센터에 토양분석을 의뢰해 작물에 맞는 시비처방을 받는 것이 효과적”이라고 말했다.

yreporter@newsis.com


728x90
728x90




사람들이 기겁을 하는 지렁이는 사실 식물에게는 가장 좋은 친구이다. 


한 연구진이 고산 지대의 초원에서 지렁이를 잡아먹는 딱정벌레가 있을 때 식물이 더 잘 자라는 것을 발견하고는 지렁이의 생태적 역할에 대해 시험을 했단다. 그리고 그 결과를 딱정벌레의 존재가 속흙의 토질을 향상시킨다고 <동물생태학 저널(Journal of Animal Ecology)>에 발표했다.  


딱정벌레가 존재하면 아마 딱정벌레에게 먹히지 않으려고 지렁이가 더 깊은 흙속으로 파고 들어가는데, 이러한 일 때문에 지렁이가 속흙을 부수어서 영양분과 물이 그곳으로 이동한다는 것이다. 


연구진은 천적인 딱정벌레가 없어서 지렁이가 겉흙에만 머물러 있을 때 발생하는 토양 개선 효과보다 속흙에 영양분과 물을 가져와 비옥하게 하는 것이 식물에게 더 좋기에 그렇다고 추측한다. 


그래서, 작물이 잘 자라지 않는 것이 지렁이가 부족해서 그럴 수도 있지만,  지렁이가 도망다닐 천적이 없어서 그럴지도 모른다는 사실.


역시나 균형 잡힌, 다양성이 살아 있는 곳에서 농사도 더 잘 될 수밖에 없는 것인가 보다. 


728x90

+ Recent posts