일본의 마을 산에서 나비와 반딧불이 급감

세계의 추세와 마찬가지

심해지는 '보통종'의 위기 


일본 자연보호협회가 사무국을 맡고 있는 전국의 마을 산 시민 조사"중요 생태계 감시지역 모니터링 추진사업(환경성 사업. 이하 '모니터링 사이트 1000개 지역 조사'라고 함)에서 2005-2017년도 전국의 약 200개소의 조사지에서 얻은 자료를 분석한 결과, 일본 마을 산에서 나비와 반딧불이 등 친근한 생물종의 대부분이 감소세이 있는 것으로 드러났다.


감소세가 나타난 종류에는 나비류나 반딧불류 등의 곤충류 외에 큰부리까마귀, 직박구리, 제비 등의 조류, 토끼나 담비 같은 포유류 등 매우 흔히 볼 수 있던 친근한 생물종 대부분이 포함되어 있다.


특히 나비류는 평가대상 종(87종) 가운데 약 40%(34종)가 조사대상으로 삼은 지역에서 멸종위기 판정 기준의 하나인 감소율(10년 기준 30% 감소)에 해당할 만큼 급감하고 있다는 가능성이 시사되었다.


이 가운데 왕오색나비와 산제비나비(멸종위기A류의 감소율 기준에 해당), 큰멋쟁이나비와 흑백알락나비(멸종위ⅠB류의 감소율 기준에 해당), 굴뚝나비와 한줄나비(멸종위기 류의 감소율 기준에 해당) 등이 포함되는데, 이들 대부분은 최신 환경성 위험목록에 게재되지 않은 '보통종'이었다. 이들 종의 대부분은 마을 산을 주요 서식지로 삼기 때문에, 이대로 계속 감소되면 앞으로 멸종위기종으로 판정될 가능성이 있다. 


일본의 마을 산은 국토의 약 40%를 차지하는 중요한 생태계인데, 사유지가 많기 때문에 전국 규모의 조사를 실시해 그 전모를 파악하기 어려웠다(환경부, 2009). 이 조사에서는 각 지역의 시민 조사원이 주체가 되어 조사를실시해, 전국 약 200개소 마을 산의 관측 네트워크를 구축하고 전국의 마을 산 생태계의 현황을 밝힐 수 있었다.


이 결과는 2019년 11월 12일 발행된 <2005-2017년도 정리 보고서(이하 정리보고서)>에 들어간다.




세계의 추세와도 일치


2018년 10월에 발표된 WWF의 Living Planet Report 2018에서 "지난 40년 동안 야생 생물의 개체수가 60% 감소"했다고 보고되고, 올해 5월에는 국제기구 IPBES(생물다양성 및 생태계 서비스에 관한 정부간 과학정책 플랫폼)에 의하여 "100만 종이 멸종위기"라는 충격적인 메시지가 발표되었다(WWF, 2018; IPBES, 2019).


또 올해 1월 호주 시드니 대학 등의 연구진은 전문지 <Biological Conservation>에 나비와 딱정벌레 등 세계의 곤충 종 가운데 40%가 급감하고 있다는 조사 결과를 발표했다(Sanchez and Wyckhuys, 2019). 이번 조사를 통해 이러한 세계적 추세에 일본도 예외가 아니라는 것이 밝혀졌다.




마을 산의 환경 변화가 한 요인?


한편, 전국의 조사지역에 대해 실시한 설문조사 결과에서 "관리되지 않고 버려진 마을 산"이 대부분을 차지하는 것으로 나타나고, 특히 2차림(회답된 조사지 가운데 90%. 이하 동일), 인공림과 저수지, 논(70%)이 버려진 것이 뚜렷했다. 마을 산 조사지는 마을 산의 관리와 이용이 중지되어 식생 천이가 진행되거나, 개발에 의해 분단화가 진행되는 등 마을 산의 환경 변화가 진행되고 있었다. 이러한 마을 산의 환경 변화가 위에 이야기한 '마을 산 보통종의 감소'와 관련되어 있을 가능성이 있다.




외래종과 대형 포유류가 분포 확대


덧붙여, 마을 산 생태계에 영향을 미치는 미국 너구리, 흰눈썹웃음지빠귀 등 외래종이나 최근 개체수가 증가해 생태계에 미치는 영향이 우려되는 대형 포유류인 멧돼지와 사슴 등은 기록 개체수의 증가와 분포 확대가 확인되었다. 조사지에서 미국 너구리가 침입한 뒤 토종 송장개구리의 산란 수가 감소하고, 포획함정을 설치한 뒤 회복된 사례도 있기 때문에 앞으로도 토종 생태계에 미치는 영향을 파악해야 한다.




자발적인 시민의 보전 활동


또한 전국의 조사지에서는 시민에 의한 자료 활용과 마을 산 보전활동이 활발히 이루어져, 그러한 활동 사례의 수는 매년 증가하고 있는 것으로 밝혀졌다. 회답된 조사지 가운데 약 40%의 조사지에서 자원봉사에 의해 논과 2차림, 초원 등의 관리가 이루어지고 있으며, 조사활동 이외의 보전활동과 보급교육활동 등 모니터링만이 아니라 다양한 활동이 실시되고 있었다. 실제로 시민에 의한 논이나 습지의 보전 재생 활동을 통해 논을 이용하는 송장개구리 류의 개체수가 회복되었다고 확인된 조사지도 있었다. 이와 같은 시민에 의한 자주적인 보전활동이 각 조사지의 생물다양성의 보전에 공헌하고 있다는 사실을 시사했다.




앞으로의 과제와 제안


친근한 생물다양성의 급속한 감소세를 막기 위해서는 그 원인을 밝히는 동시에, 종의 지역 멸종 같은 돌이킬 수 없는 변화를 미연에 방지하기 위한 노력이 필요하다. 그를 위해서는 기존과 같이 자원봉사에 의한 마을 산 보전 활동 이외에 마을 산 환경의 지속가능한 활용 등 새로운 대책도 포함해, 시민과 행정, 비영리단체 등 모든 관계자가 연대해 마을 산 보전의 노력을 강화해 나아가야 한다.


  - 이 정리보고서에서는 파악하기 어려운 보통종도 포함해 마을 산에 서식하는 다양한 생물종의 증감 추세 등을 처음으로 밝혔다. 이 조사의 의의와 가능성은 크며, 조사에 대한 지속적인 투자가 앞으로도 필요하다.


  - 또한 지역의 시민이 주체가 되어 시민 스스로 얻은 조사 자료를 활용하고, 조사결과에 기반한 마을 산 보전 관리 활동과 지역에 뿌리를 내린 보급활동 등을 전개하고 있다. 이러한 국가와 지역의 시민, 비영리단체가 연대한 노력의 중요성이 사회적으로 인지되고, 지속적인 모니터링 체제가 구축되어야 한다. 


  - 이 조사는 장기적인 모니터링을 목적으로 한 조사 설계를 위해, 이번에 밝혀진 다양한 생물종의 증감과 그에 영향을 미칠 수 있는 요인 등을 충분히 해명했다고 할 수 없다. 효과적인 생물다양성의 보전을 위해서는 생물종의 증감에 영향을 미치는 요인과 보전대책 등의 실시상황을 파악하고, 그들의 상호 인과관계를 해명해 나아가는 것이 중요하다. 그를 위해서 이 조사 자료를 기반으로 한 새로운 연구가 확충되어야 한다.


  - 이 조사 결과는 일본의 마을 산에 서식하는 생물종의 상황을 파악하는 귀중한 지식이며, 생물다양성 국가 전략 2012-2020년과 일본 아이치 목표의 달성도 평가, 기후변화 적응 계획 등의 정책 평가나 포스트 아이치 목표에 기초해 작성되는 차기 생물다양성 국가 전략과 생물다양성 국별 보고서에서 충분히 활용하는 것이 중요하다.


  - 마을 산 조사의 조사지는 보전을 위한 활동이 활발히 이루어지는 장소임에도 불구하고, 다양한 생물종의 감소가 나타나는 등 전반적으로 생물다양성이 명료하게 개선되는 모습이 보이지 않았다. 또한 설문조사 결과, 관리되지 않는 장소를 포함하는 조사지가 대부분을 차지하는 것이나, 과거 5년간 1/4의 조사지에서 개발 행위로 인한 생식 및 서식지의 파괴가 발생했다. 관리 포기 등의 진행을 멈추고, 마을 산에 사는 생물종의 서식지를 보전해 가기 위해 많은 관계자가 연대, 협력하고, 현대적인 새로운 마을 산 환경의 지속가능한 활용 방식을 창출하는 것이 중요하다.


  - 조사지에서는 모니터링 이외에도 보급교육활동과 산림자원의 이용 등 다양한 활동이 실시되고 있었지만, 그 활동을 지원하는 보조금과 보조금을 받고 있는 조사지는 전체의 약 10%밖에 존재하지 않았다. 기존 농지 등의 환경보전에 대한 보조금 제도가 활용되고 있지 않은 원인을 파악하고, 각지의 보전활동을 활성화시키는 사회적 구조 개선이 필요하다. 



https://www.nacsj.or.jp/media/2019/11/17887/



https://www.nacsj.or.jp/official/wp-content/uploads/2019/11/20191112_Moni1000-5yearsReport.pdf

728x90

농연기구農研機構(츠쿠바시)는 유기 재배와 저농약 재배를 행하고 있는 논에서는 기존의 재배법보다 동식물이 더 많이 확인될 수 있다는 걸 이 현을 포함한 전국의 현지조사에서 밝혔다. 생물다양성을 배려한 벼농사가 환경에 미치는 영향을 줄인다는 걸 처음으로 과학적으로 증명. 농산물의 상품화와 부가가치에 공헌할 것으로 기대된다.


농연기구는 친환경 보전형 농업의 생물다양성 효과를 검증하기 위하여, 무농약, 무화학비료의 유기재배와 농약, 화학비료를 50% 이상 줄인 특별 재배를 행하는 논 및 행하지 않는 기존의 논에서 모두 생물의 종류와 수를 조사,평가 지침에 따라서 전국 규모로 실시했다. 조사는 2013-2015년 3년 동안 이 현의 약 100개소를 포함해 전국 1074개소의 논에서 조사했다.


그 결과, 조류藻類인 차축조(Chara braunii)와 양치류인 큰물개구리밥(Azolla japonica) 등 멸종위기에 있는 식물과 해충의 천적인 갈거미속의 거미가 관행재배에 비해 저농약 재배에서는 1.5배, 유기 재배에서는 2배 많았다. 참개구리속의 개구리는 유기 재배에서 2.5배였다. 고추좀잠자리(Sympetrum frequens) 등 좀잠자리속의 잠자리, 왜가리를 포함한 물새의 개체수도 유기, 저농약 재배에서 많은 것이 확인되었다.


청개구리와 미꾸리과는 화학비료와 농약을 줄이기보다는 논두렁 식생의 풍부함과 돌려짓기 같은 개별 관리법이 개체수에 영향을 주는 것으로 나타났다. 논두렁의 식물에 제초제를 사용하기보다 풀을 베어 식물이 남아 있는 쪽이 개구리류가 서식하기 좋고, 겨울에도 주변의 도랑에 물을 남겨두면 생존하게 된다. 


조류는 유기 재배의 논 면적 약 1평방킬로미터의 넓은 장소에서 왜가리를 포함한 물새가 많았다.


농수성은 환경보전형 농업에 종사하는 농가에 직접지불하는 제도를 실시. 반면, 일본의 유기 재배 비율은 1% 미만이라고 한다. 수확량이 줄거나 제초의 노력이 드는 일 등이 이유.


농연기구의 카타야마 나오키片山直樹 연구원은 "유기재배와 농약 절감 재배에 종사하는 농가가 '생물친환적'이라고 자신있게 말할 수 있는, 환경을 배려한 농업을 호소할 수 있다"고 이야기했다. 


https://ibarakinews.jp/news/newsdetail.php?f_jun=15677797685263

728x90

고창에 갔을 때이다. 

군에서 무슨 상하수도 정비를 한다면서 수로까지 싹 현대화하는 사업을 벌이고 있다는 지역 주민의 이야기를 들었다. 다들 알다시피 수로의 현대화란 콘크리트로 수로를 발라버리는 일을 가리킨다. 

그런데 문제는 이 지역에 예산군 쪽에서 황새 복원사업으로 풀어준 황새들이 머물며 먹이활동을 하는 장소라는 것이다. 그런데 수로가 이렇게 콘크리트로 정비되면, 농사짓는 사람 입장에선 관리가 수월해져 좋을지 몰라도 황새 같은 조류의 입장에선 유용한 공간이 사라지는 셈이니 괴로워질 것이다. 

그런 점들을 고려한 지역 주민(이 분은 황새 복원센터의 모니터링 요원으로 활동 중이었음)은 어설프게 무얼 복원한다면서 동물만 괴롭게 하지 말고 그럴 거면 아예 안 했으면 좋겠다고 이야기했다. 복원에 쏟아부은 돈이 얼마인데 환경이 받쳐주지 않는 상황에서 이게 무어냐는 말이었다. 


황새의 사례에서도 그렇지만, 기타 여러 동물의 야생 복원 사업이 많이 추진 중인 것으로 알고 있다. 그런데 과연, 우리는 그들과 공존할 준비가 되어 있는가 묻지 않을 수 없다. 머릿속의 당위성 말고, 현실적으로 그들에게 서식지와 먹이활동 공간 등을 양보하거나 그를 위해 인간의 영역을 조정할 수 있는지 되묻지 않을 수 없다. 너희를 복원해 줄 테니 인간이 이룩한 문명의 구조에 너희의 생활방식을 맞추라고 일방적으로 강요해서 될 일인가?

728x90

<농생태학: 지속가능한 먹을거리 체계의 생태학>








13장 종속 영양 유기체


지금까지 우리는 농업생태계가 식물의 성장에만 전적으로 기반하는 것처럼 논의했다. 비록 식물이 실제로 우리의먹을거리를 재배하기 위한 토대임에도 불구하고, 동물 -그리고 곤충과 균류 및 일부 원생생물 같은 기타 비광합성 유기체- 이 이들 체계를 관리하는 데 고려해야 할 농업생태계와 요인들의 절대적인 근본 요소라는 사실을 무시할 수 없다. 2장에서 우리는 이들 유기체를 종속 영양 생물, 또는 다른 유기체를 소비함으로써 영양분과 에너지 요구를 충족시키는 모든 유기체라고 정의했다. 


다양한 유형의 종속 영양 생물은 환경의 생물적 요인으로 11장에서 논의되었다. 이런 맥락에서 우리는 종속 영양생물과 다른 유기체 사이의 상호작용을 살펴보았고, 우리의 관심은 종속 영양 생물 자체를 조사하는 것보다 이런상호작용들을 분류하고 유형별로 구별하는 데 있었다. 이번 장에서 우리는 특별한 종류의 생물적 요인이라기보다는 이들 유기체를 직접 살펴보는 것으로 종속 영양 유기체에 대한 언급의 틀을 바꾼다. 이 결과는 두 가지 관련되어 있긴 하지만 별개의 논의로 이어진다. 작물에 영향을 미치는 요인으로서 종속 영양 생물이란 점에서, 우리는 환경의 요인으로 종속 영양 생물에 초점을 맞추지만 관련된 유기체와 그들이 작물에 미치는 특별한 영향에 관심을 기울인다. 농업 생산의 자원으로서 동물이란 점에서, 우리는 인간이 먹을거리를 얻는 유기체이자 독립된 요인들로 구성된 환경에 직면한 작물처럼 동물을 논의한다. 






작물에 영향을 미치는 요인으로서 종속 영양 생물


2장에서 설명한 것처럼, 종속 영양 유기체는 생태계의 구조와 기능에서 중요한 역할을 담당한다. 식물의 1차 소비자 또는 다른 동물이나 동물성 산물의 2차 소비자가 되는 소비자로서의 역할에서, 그들은 에너지 흐름, 양분 순환 및 다른 유기체, 특히 식물의 숫자를 규제하는 데 필수적인 요소이다. 1차 소비자로서 그들은 식물의 초식동물, 기생자 또는 수분 매개자이다. 2차 소비자로서 그들은 다른 동물의 기생자이거나 포식자이다. 그들은 생태계와 농업생태계에서 이처럼 여러 가지 다양한 역할을 모두 하기에, 종속 영양 생물은 개별 작물과 관련하여 환경의 요인으로 스스로를 나타낼 수 있는 다양한 기회를 갖는다. 





곤충과 기타 무척추동물에 의한 초식

11장에서 논의했듯이, 초식은 식물의 조직이 소비하는 유기체에 의해 제거되는 것과 함께 식물에게 매우 직접적인 영향을 나타내는 제거 간섭이다. 초식동물의 지위는 거의 모든 육상 동물의 집단에 의해 진화적 시간에 걸쳐 활용되어 왔지만, 종의 숫자란 관점에서 곤충은 준비된 먹이원으로 식물을 이용하는 데에 가장 멀리까지 나아갔다. 알려진 백만 이상의 곤충 가운데 약 26%가 초식성(식물을 먹음)이다. 식물의 바이오매스를 동물의 에너지로전환하는 그들의 능력과 함께, 먹이그물과 먹이사슬에 대한 이 곤충들의 영향은 꽤나 극적이다(Price 1997; Vandermeer 2011). 연체동물(달팽이와 민달팽이) 같은 몇몇 다른 무척추동물 집단도 초식이지만, 곤충이 대부분의 농업생태계에서 가장 중요한 집단이기에 여기에서는 그들에게 주목할 것이다.


초식 곤충은 식물성 물질을 찾고, 선택하고, 섭취하며, 소비하는 여러 특화된 방법을 갖는다. 그들은 독성과 무독성 식물만이 아니라, 양분이 많은 물질과 그렇지 않은 물질을 구별하는 화학적, 시각적, 기타 방법이 있다. 여러 곤충은 특정한 식물의 부분, 종 또는 식생의 유형을 처리하는 데 적응된 특화된 입이나 소화기관을 가지고 있다. 일부 초식 곤충은 그들이 소비하는 것에 매우 특화된 반면, 다른 곤충들은 보편가(잡식성)로 간주되며 광범위한 식물성 물질을 소비한다. 식물성 물질이 존재한다면 어떤 초식 곤충이 그걸 먹을 수 있다는 건 꽤 좋은 추측이다!

 

식물은 이동함여서 먹히는 걸 피할 수 없다는 불리한 점이 있다. 정주해 있는 것을 만회하고자, 식물은 독성 화합물부터 돌기와 가시 같은 보호용 구조까지 주목할 만한 반초식 전략의 모음을 진화시켰다. 많은 식물은 여러 꿀풀과의 테르펜이나 여러 십자화과의 시안화물 같은 불쾌하거나 혐오감을 주는 화합물을 생산한다.  


식물의 바이오매스를 먹는 게 곤충들이 진화해 온 과정이기에, 작물이 특히 대규모 단작으로 심어졌을 때 그들은 곤충으로부터 엄청난 도전에 직면하게 된다. 초식 곤충이 식물성 기반의 먹이를 찾기 위해 사용하는 방법이 무엇이든지, 엄청난 대규모 단작에서 보내는 화학적, 시각적 실마리는 매우 잘 탐지할 수 있거나 볼 수 있다. 초식동물이 일단 작물을 발견하면, 14장에서 설명할 r-선택된 군체 형성의 특성이 작동하기 시작하고, 곤충은 재빨리 작물에 피해를 주는 해충이 된다. 식물이 초식으로부터 보호하기 위해 공진화시켜 온 방어용 화합물은 작물화 과정의 일부분으로 작물에서 빠져나가 재배되어 왔기 때문에, 초식 곤충이 농업이 직면하고 있는 가장 큰 과제의 하나라는 사실은 놀랍지 않다.



그림13.1 나비목 유충이 콩과식물의 꽃에서 먹이 활동을 하고 있다. 초식동물에 의한 식물 바이오매스의 소비는식물의 성공적 미래에 영향을 줄 수 있다. 






방목과 비방목 척추동물에 의한 초식

농생태학의 관점에서, 우리는 초식성 척추동물을 두 가지 집단으로 나눌 수 있다. 하나는 야생동물이고 다른 하나는 가축이다. 두 집단은 모두 특정한 식물 종이나 소비하는 부분, 사용하는 소화기관 및 식이 선호도가 엄청나게 다양하지만, 식물성 물질이 그들 식단의 토대라는 점은 공통이다. 조류를 먹는 물고기와 씨앗을 먹는 새 사이의 차이점이 좋은 사례이다. 야생 척추동물이 먼저 논의될 것이다.


농업생태계의 설정에서, 농사 지역에 들어가고 작물을 소비하는 야생의 척추동물은 주로 유해 동물로 간주된다. 여기에는 여러 종의 새, 많은 설치류 및 몇몇 더 큰 유형의 포유동물이 포함된다. 새는 주로 종자나 과실을 먹는데, 이는 자연 생태계에서 종자를 분산시키거나 발아를 준비시키기 때문에 식물에게는 이로운 경우가 있기도 하다. 하지만 이런 먹이 행동이 작물에 초점을 맞추면, 피해가 상당히 커질 수 있다. 잘 익은 포도를 새에게서 지키기 위한 캘리포니아의 포도주용 포도 재배자들의 노력은 자동식 소음발생기와 반사체부터 그물망에 이르기까지 모든 걸 볼 수 있다. 잉꼬(Aratinga spp.) 떼는 수확 직전인 많은 양의 곡식을 소비함으로써 멕시코 남부의 벼 작물을 빠르게 훼손시킬 수 있다. 검은꼬리사슴(Odocoileus hemionus)이 연한 잎을 먹는 건 토마토부터 포도와 크리스마스 트리에 이르기까지 다양한 작물에 심각한 피해를 줄 수 있다. 자연 생태계와 농업생태계가 통합된 경관을 형성하는 곳의 어느 상황에서나 야생 동물의 초식은 항상 관심사이다. 동물에서 작물을 분리시키기 위한 적절한 전략이 수립되어야 한다(그림13.2)

 

그림13.2 캘리포니아 쿠야마 벨리의 포도밭에서 유해한 종속 영양 생물을 관리하는 사례. 새들은 매달려 있는 포식자의 눈이 그려진 풍선 때문에 가까이 가지 않고, 전경에 있는 반짝이는 줄과 오른쪽에 상자 안에 보관된 태양광으로 작동되는 소음발생기가 새를 쫓는다. 설치류 방제는 소음발생기 뒤쪽에 보이는 상자에 외양간올빼미가 둥지를 틀어 크게 도움이 되며, 어린 포도나무에 대한 토끼 피해는 재배용 플라스틱관으로 막는다. 포도밭 전체에는 사슴과 토끼, 이웃에서 키우는 소나 말이 가끔 오는 걸 막는 울타리가 쳐져 있다. 





인간에게 먹을거리가 되거나 기타 산물을 제공하는 초식성 동물은 다른 이야기이다. 농업 생산의 요소가 되는 이들 동물은 이번 장의 두 번째 부분에서 더 자세히 다룰 것이다. 여기에서 우린 그들의 초식이 식물에 미치는 실제영향에 초점을 맞출 것이다. 


가축화 이전에, 풀이나 연한 싹을 뜯어 먹는 동물들은 자연 생태계에서 그들의 먹이를 얻었다. 가축화가 일어남에 따라, 동물은 그들의 먹이 요구를 제공하는 인간에 의존하게 되었다. 이는 19장에서 더 자세히 논의될 다양한목초에 기반한 체계의 개발을 이끌었다. 사람들은 목초의 성과를 개선하거나 적절한 동물의 양분 섭취를 위한 토대를 제공하는 풀이나 콩과식물을 심어 동물을 관리하는 방법을 배웠다. 


목초지와 방목장 관리인들은 가축에 의해 뜯어 먹히는 건 식물에 좋다고 믿었다. 축적된 바이오매스를 제거하고 새로운 성장을 자극한다. 식물의 물질은 동물을 통해 이동하고, 양분이 풍부한 분뇨로 토양에 퇴적된다. 흥미롭게도 동물들은 목초지에서 선택적으로 풀을 뜯어, 먼저 고품질의 꼴을 제거한 다음 이어서 2차적인 꼴로 갈 것이다. 그러한 선택적 풀 뜯기는 목초지의 종 구성에 영향을 미친다. 농민은 방목 압력, 동물의 양분 요구, 지역의 환경 조건에 따라 다른 식물 종들보다 선호되는 특정 식물 종을 관리하는 계획을 개발해 왔다. 그러나 기본적으로 초식동물이 방목장이나 목초지 체계를 위한 종의 구성과 관리 전략을 결정한다.  






균류에 의한 기생과 상리공생

종속 영양 균류는 어느 생태계에서도 중요한 구성요소이고, 농업생태계에서 그들은 매우 중요한 역할을 수행할 수 있다. 균류는 먹이를 먹거나 섭취하기보다는, 그 대신 그 주변의 환경에서 양분을 흡수한다. 많은 균류가 그들주변에 강력한 가수분해 효소를 분비하여 복잡한 분자를 균류가 흡수하고 이용할 수 있는 더 작은 유기 화합물로 분해함으로써 이를 행한다. 다른 균류는 균류가 식물의 세포벽에 침투하여 세포에서 양분을 흡수할 수 있게 하는 효소를 생산한다. 다양한 균류의 종이 생산하는 여러 효소는 매우 다양하기에, 집단적으로 균류는 살아 있고 죽은 다양한 범위의 유기물로부터 화합물을 소화시킬 수 있다. 또한 균류는 균사체라고 부르는 섞어 짠 덩어리를 형성하는 믿을 수 없이 광대한 뿌리 같은 균사 때문에 이러한 물질에 대한 접근성이 매우 좋다. 결합된, 효소와 균사는 물과 양분 흡수에 균류가 매우 효율적이 되도록 만든다. 죽거나 썩어가는 식물 물질로부터 양분을 소화시키고 흡수하는 균류의 역할은 생태학적으로 상당히 중요한데, 이 장의 목적을 위한 우리의 초점은 그들의 종속 영양 소비자로서의 역할과 식물에 미치는 영향에 관한 것이다. 균류는 두 가지 주요한 방법으로 식물에 영향을 미친다. 기생자와 상리공생의 동반자가 그것이다. 


식물에 기생하는 균류는 살아 있는 식물의 세포에서 양분을 흡수한다. 10만이 넘는 것으로 알려진 균류의 종 가운데 약 30%가 기생자로 살아가고 있으며, 그 대부분이 식물에 질병을 일으킨다(또는 병원균)(그림13.3). 연간 전 세계 과일 수확의 10-50%가 세균성 질병으로 사리지고, 곡식 작물은 해마다 큰 피해를 입을 수 있다. 한번 감염되면, 식물은 바르게 발달하지 못하고, 기형이 되거나 성장이 저해된 부분을 형성한다. 또한 균류가 생산한 화합물 -자냥균 아스페리길루스Aspergillus가 땅콩이나 곡식에 기생할 때 생산하는 아플라톡신 같은- 은 인간에게 유독할 수 있다.


그림13.3 멕시코 타바스코에서 벼에 큰 영향을 미치는 벼 도열병 균(Magnaporthe oryzae). 균이 잎을 뚫고 들어가 빠르게 합쳐져 잎을 죽일 수 있는 작은 병변이 생기고 곡식 수확량을 심각하게 감소시킨다. 이 사진에서 균의 영향을 받는 영역은 어둡게 나타난다(살아 있는 동안에는 불그스름함). 





다른 한편, 식물과 상리공생을 형성하는 균류는 두 유기체에게 혜택을 만들어낸다. 이 공생 관계는 12장에서 식물에 영향을 미치는 중요한 생물적 상호작용으로 나왔다. 작물 군집의 설계와 관리에서 이런 상리공생의 중요성은 16장에서 자세히 설명할 것이다. 


앞서 설명한 바와 같이, 일부 균류의 균사는 뿌리의 바깥쪽 둘레에 빽빽한 균사체의 깔개(균개)를 형성(외부 기생 균근)하고, 물과 양분의 교환이 일어날 수 있는 식물 뿌리의 세포 사이에 있는 공간을 뚫고 들어감으로써 식물과 긴밀한 관계를 형성한다. 다른 균류는 실제로 식물 조직의 세포를 뚫고 들어가서, 그들의 균사(뿌리 내생 균근)를 세포 사이에 있는 공간을 통해 뿌리 주변의 토양으로 보낸다. 두 경우 모두, 균사를 형성하기 위해 함께 뒤얽힌 매우 광범위하고 정밀한 균사의 그물망이 물과 양분을 흡수할 수 있는 그 능력을 확장시킴으로써 식물에게 혜택을 제공한다. 게다가 균류가 생산한 효소는 토양 생태계에 있는 병원성 박테리아, 선충류 및 기타 균류 같은 다른 종속 영양 유기체에 대하여 길항 작용을 할 수 있어, 이들 병원균으로부터 식물 협력자를 보호한다. 이런 서비스에 대한 대가로, 균류는 식물의 광합성 활동으로 생성된 당분을 받고, 두 유기체 모두 번성한다(그림13.4).



그림13.4 딸기를 위한 뿌리 집락 형성을 향상시키고자 균근균의 포자를 실험적으로 접종. 토양이 산업형 투입재와 농법으로 오랫동안 관리된 뒤, 이로운 유기체가 생태학적 과정을 복원시키는 일환으로 일부러 도입될 수도 있다.





또한 대부분의 식물은 식물의 잎 표면이나 해를 끼치지 않고서 잎의 조직 안에서만 살고 있는 상리공생의 균류를가지고 있다. 어떤 풀들처럼, 잎 안에 살고 있는 그러한 균류 가운데 일부는 초식동물에게 식물의 물질을 유독하게 만들고, 경우에 따라서는 가뭄과 열, 또는 중금속에 대한 식물의 저항성을 증가시킬 수도 있다. 카카오(Theobroma cacao)의 경우가 좋은 사레이다. 뿌리 내생 균류를 접종한 모종은 그렇지 않은 모종보다 훨씬 낮은 질병 수준을 나타냈다(Arnold et al. 2010).






수분

11장에서 설명했듯이, 종속 영양은 속씨식물의 수분에 중요한 역할을 담당한다. 이런 관계는 여러 동물 수분 매개자가 많은 다른 종의 식물을 방문할 수 있으며, 단일한 식물 종은 하나의 수분 매개자에게 특별히 의존하지 않는 원시협동의 형태를 취하곤 한다. 다른 한편, 일부 수분 상호작용은 단일한 수분 매개자 종과 단일한 식물이 상호의존적이 되거나, 절대적 상리공생이라 부르는 걸 형성하는 지점까지 공진화해 왔다. 식물은 수분 매개자에게 완전히 의존적이 되고, 그 반대도 마찬가지이다(그림13.5). 어떤 열대의 난초는 어느 벌 종의 암컷이 방출하는 성 페르몬을 정확히 모방하는 화합물을 합성하는 능력을 진화시켜, 페르몬이 미량으로 생산되더라도 식물이 꽃으로 수컷을 끌어들일 수 있게 한다. 난초의 꽃 형태도 암컷 벌의 생식 구조의 모양을 취하고 수컷 벌이 꽃에 들어가는 경로에 꽃가루 주머니를 위치하게 하는 방식으로 공진화하여 그것이 암컷 상대라 생각하게 하여, 꽃가루 주머니는 벌에게 부착되어 수컷에게서 그걸 받아들이고 제거할 준비가 된 또 다른 구조의 다른 꽃으로 옮겨진다. 이러한 "자물쇠와 열쇠"의 배열은 식물성 먹이에 대한 초식동물의 요구가 식물의 형태와 진화에 영향을 줄 수 있는 정도를 반영한다. 


그림13.5 캘리포니아 와이먼 캐년에서 벌이 개울난초(Epipactis gigantea)의 꽃에 앉았다. 난초는 자신의 꽃 배열과 성적으로 매력적인 페르몬의 방출 모두를 갖추고 암컷 벌을 모방한다. 





속씨식물 종의 약 80%가 동물에 의해 수분이 되고, 이 가운데 대부분이 곤충에 의해 수분이 된다. 결과적으로 벌은 특히 여러 농작물에게 가장 중요한 곤충 수분 매개자이다(그림13.6). "군집 붕괴 장애"로 알려진 현상에서 기인한 꿀벌 개체군의 감소에 관해 북아메리카와 유럽에서 크게 우려하고 있다. 캘리포니아에서는 봄에 꽃이 피는 불과 몇 주 동안 막대한 아몬드 작물을 효과적으로 수분시키기 위해 160만 이상의 가축화된 벌 군집이 필요하다. 2013년 봄에 개화하기 몇 달 전에 상업용 군집의 40-50%가 죽은 덕분에, 아몬드 재배자들은 수분을 완료하기위해 전국에서 벌 군집을 데려오려고 엄청난 노력을 기울여야 했다. 죽음이 계속된다면, 캘리포니아의 주요 수출작물이 된 것을 수분시키기에 충분한 군집이 없어질 것이다(Grossman 2013). 야생 벌은 그렇게 짧은 시간 안에 그렇게 넓은 지역을 수분시킬 정도로 충분히 많은 숫자가 없기 때문에, 가축화된 군집이 성공의 열쇠이다. 구 세계에서 꿀벌과 함께 공진화해 온 다른 작물 -오이, 멜론, 갓, 사과, 양파 같은- 도 비슷한 상황에 있다. 


그림13.6 멕시코 유카탄에 있는 벌침이 없는 야생벌의 벌통. 지역민들은 빈 통나무의 단면에 이 벌을 오랫동안 사육해 왔다. 또한 이 벌들은 호박과 고추 같은 지역의 작물에게 매우 중요한 수분 매개자이기도 하다. 




다른 곤충 중에서 나비, 나방, 파리는 중요한 꽃의 수분 매개자이기도 하지만, 이와 관련하여 그들의 중요성은 유충의 형태에서 초식성 해충이란 더 두드러진 역할로 인해 무색해진다. 일부 조류와 박쥐도 수분 매개자이지만, 또 한편 농업에서 그들의 역할은 제한적이다. 벌새는 블루베리를 수분시킨다고 알려져 있다. 박쥐는 여러 식물, 특히 야간에 꽃이 피는 식물 -새로이 인기를 얻고 있는 "용과"를 생산하는 착생 선인장 같은- 을 수분시킨다. 또한 박쥐는 바나나와 망고, 대추, 무화과, 복숭아, 캐슈넛, 구아바, 아보카도, 용설란(우리가 데킬라와 메스칼을 기대하는)의 중요한 수분 매개자이다.  






초식동물의 포식과 기생

농업생태계(특히 생태학적으로 관리되는 것)도 작물에 직접적으로 영향을 미치지 않지만 잠재적인 작물 해충의 개체군을 규제하는 데 중요한 역할을 수행하는 상대적으로 다양한 종속 영양 생물의 집단을 가지고 있다. 여기에는 초식성 곤충에 기생하는 곤충(알벌Trichogramma wasp 같은)과 작물 해충을 포식하는 광범위한 분류학상 동물들이 포함된다. 후자의 범주에는 포식성 곤충, 박쥐, 조류, 특정 육상 포유류 및 파충류와 양서류까지 포함된다. 자연적 또는 생물학적 방제에서 그들의 역할은 잘 알려져 있고, 유기농업 같은 대안적 농사 체계는 이들 유기체의 존재와 효과적 활동에 크게 의존한다. 이런 이로운 유기체의 중요성은 17장에서 농업생태계의 요소로 논의될 것이다. 





토양에서 생태학적 역할

8장에서 상세히 논의한 것처럼, 농업생태계의 지하 환경은 여러 종속 영양 생물이 포함된 다양한 유기체의 모음으로 가득 차 있다. 원생생물, 포식성 선충류, 여러 무척추동물, 심지어 일부 균류 같은 이들 유기체의 대부분은 식물을 소비하는 토양 유기체(초식성 선충류 같은)의 통제 또는 질병을 일으키는 박테리아와 균류에 대한 길항제로서 중요한 역할을 한다. 그들의 존재는 토양에서 균형 잡힌 "병태계"를 확립하고 유지하는 데 중요하다(Garcia-Espinosa 2010). 앞서 논의한 식물의 뿌리와 상리공생의 관계를 형성하는 균근균은 뿌리의 물과 양분 흡수율을 향상시키는 일 외에도 병원체에 대한 살아 있는 장벽을 제공할 수 있다. 지렁이는 토양 구조를 개선하고 배설물의 형태로 유기물을 추가할 뿐만 아니라, 토양을 돌아다니며 병원성 균류와 박테리아를 소비한다. 종속 영양 유기체는토양에서 여러 가지 다양한 역할을 수행함으로써, 전체적으로 고려할 때 작물이 자라는 환경의 주요 요인인 토양의 근본적 측면이라 할 수 있는 지하의 생태계를 구성하는 데 도움을 준다.







농업 생산에서 자원이 되는 동물

 

동물은 작물 생산 체계에서 명확하게 초식성 해충, 기생자, 수분 매개자, 포식자의 역할로만 한정되지 않는다. 다양한 품종이 가축화된(그리고 반쯤 가축화된) 동물 또한 인간 관리자에게 중요한 산물을 생산한다(그림13.7). 작물과 마찬가지로, 인간의 활용과 소비에 중요한 산물의 원천이 되는 각 유형의 종속 영양 동물은 그것이 가장 잘 자라며 어떤 조건의 농업 생산에서 가장 성공적인지 결정하는 특정한 적응과 특성의 세트를 지닌다.  


그림13.7 멕시코 유카탄 마니의 소규모 염소 생산 체계. 주로 지역의, 재생할 수 있는 자원은 귀중한 단백질원을생산하는 데 사용된다. 




먹을거리나 섬유를 위해 사육된 가축화된 동물은 직간접적으로 그들의 양분을 식물에 의존한다. 이런 영양 요구는 그들에게 작물을 먹이는 것부터 약간 관리되며 심지 않은 목초지에 방목하는 것까지 다양한 방법으로 충족될 수 있다. 이러한 식물에 대한 의존성 때문에, 동물은 식물이 할 수 있는 방식으로 직접적으로 "사육될" 수 없다. 식물성 먹을거리가 농장 밖에서 재배되며 심지 않고 갈지 않은 목초지나 자연 식생으로 구성되거나 초식성 중간물을 처음으로 통과(예를 들어 닭이 작물을 먹이로 삼는 곤충을 먹는 경우)하더라도 식물은 항상 그 과정의 일부이다.   


이런 넓은 관점을 지닌 농생태학자들은 농민들이 식물에 대한 동물의 영양 의존도가 균형 잡힌 방식으로 유지될 뿐만 아니라, 동물의 생명과 생산에 영향을 미치는 다른 모든 환경 요인들도 이전 장에서 식물에 대해 검토한 허용 한계 안에서 유지되도록 돕는 데 관심을 기울여야 한다. 온도, 빛, 물, 토양 및 기타 요인들은 동물의 요구만이 아니라 그들을 먹이는 식물의 요구와도 맞추어야 한다. 





동물의 생리와 성장

종속 영양 유기체는 여러 면에서 식물과 다르다. 광합성을 통해 에너지를 포획하고, 토양에서 무기 양분을 흡수하며, 대기에서 탄소를 취하기보다, 종속 영양 생물은 이미 존재하는 유기물에서 그들의 먹이를 섭취하고 에너지를 얻어야 하며, 이 모두는 결국 식물이나 다른 동물에 의해 생산된 것이다. 다른 유기체에게서 먹을거리와 에너지를 얻는 이외에도, 동물은 식물보다 훨씬 더 스스로 조절한다. 그들은 온도나 pH 같은 그들의 내부 조건을 조절할 수 있다는 점에서 상대적으로 항상성이 있다. 우리가 더 큰 동물을 생각할 때면, 폐와 순환계, 소화계, 중추신경계 및 머리카락이나 털 같은 외부의 막처럼 이런 항상성을 유지하는 그들이 가지고 있는 구조를 생각한다. 그리고 물론 많은(하지만 전부는 아님) 종속 영양 유기체를 성공으로 이끄는 핵심 요소는 이동성이다. 확립된 식물은 그 뿌리가 고정된 위치에 제한되는 데 반하여, 대부분의 동물은 먹이와 피난처 및 성장과 발달을 위한 최적의 조건을 찾기 위해 이동할 수 있으며, 해로운 상태나 위험을 피하거나 도망칠 수 있다. 

 

다음에 나오는 먹이 소비, 성장 및 발달의 과정에 대한 기본 소개는 지속가능한 먹을거리 체계로 동물을 더 잘 통합시키는 방법을 이해하기 위한 배경을 제공하기 위함이다. 더 깊고 상세한 건 독자들이 기본 생물학이나 동물생리학 책을 참고하길 권장한다. 





동물 바이오매스의 생산

식물이 식물의 다른 부분으로 광합성을 통해 탄소를 분할하는 것처럼, 종속 영양 동물은 그들이 소비하는 식물성먹을거리로부터 조직과 장기, 뼈, 지방 및 털이나 깃털 같은 다른 부분에 탄소를 분배하고 축적하며 저장한다. 그리고 식물처럼 동물도 그들의 몸을 구성하는 조직만이 아니라 그들의 몸이 기능할 수 있는 물질(호르몬과 효소 같은)을 생산하기 위해 다른 요소들을 필요로 한다. 이런 다른 요소들에는 질소, 황, 산소 및 기타 비교적 소량으로 필요한 몇몇 요소들이 포함된다. 동물은 그들이 섭취하는 먹이로부터 이들 요소를 모두 얻어야 한다. 


동물 바이오매스의 생산이 발생할 수 있기 전에, 소비되는 먹이는 더 간단한 분자 구성요소로 분해되기 위하여 몇 단계의 가공 과정을 거쳐야 한다. 지방산, 아미노산, 단당을 포함하는 이들 구성요소는 동물의 몸을 구성하는 더 복잡한 분자 및 궁극적으로는 조직을 생산하기 위해 재조합될 수 있다. 이런 재조합 과정을 위한 에너지 -그리고 동물의 기타 생리학적 활동- 는 동물이 소비하는 유기물의 일부가 분해되고 산화됨으로써 발생한다.


먹이의 가공은 섭취, 또는 먹기나 섭식 행위와 함께 시작된다. 이는 동물이 채우도록 진화한 생태적 지위와 직접적으로 관련된 다양한 방식으로 발생한다. 일부 종속 영양 생물은 그들의 먹이원에 살고 있는 기질을 먹는 동물이다. 다른 종속 영양 생물은 살아 있는 숙주로부터 양분이 풍부한 체액을 빨아먹는 액체를 먹는 동물이다. 소에 있는 진드기는 다른 동물을 먹이로 삼아 액체를 먹는 동물의 좋은 사례이고, 진딧물은 식물을 먹이로 삼아 액체를 먹는 동물의 좋은 사례이다. 하지만 대부분의 동물은 대량을 먹는 동물이다. 그들은 물어뜯거나 찢어서 비교적 큰 조각의 먹이를 먹은 다음, 가공을 위해 특화된 구획이 있는 소화기관으로 그 조각을 이동시킨다. 가축 생산 체계에 수반되는 대부분의 동물은 이런 종류의 먹이 체계를 가지며, 주로 식물을 먹는 동물이다. 


일단 먹이를 섭취하면, 먹이를 더 작은 부분으로 분해하고, 먹이를 흡수하고 소화되지 않거나 사용되지 않은 물질을 제거하는 기능을 수행하는 세포 밖의 소화기관(동물의 몸 외부의 환경과 계속 이어지는 기관)을 통과하게 된다. 이러한 각각의 기능은 목적을 위해 설계된 특정한 구획에서 발생한다. 척추동물에서 이런 다양한 구획은 구강부터 소화관으로 알려진 항문까지 연장된 전문화된 관의 부분들이다. 


섭취한 유기물은 몸이 흡수할 수 있을 만큰 작은 분자로 분해되어야 한다. 이는 기계적, 화학적 소화를 통해 발생한다. 동물이 그들의 먹이에 들어 있는 단백질과 탄수화물, 핵산, 지방 또는 인지질을 직접적으로 사용할 수 없기때문에 화학적 소화가 일어나야 한다. 앞서 지적했듯이, 효소의 가수분해를 통해 더 큰 분자를 분해하면 대사 활동에 에너지를 제공하는 단당만이 아니라 동물이 요구하는 더 큰 분자를 모으는 데 필요한 더 작은 구성요소가 생성된다. 


일부 기계적 소화는 보통 씹는 과정 동안 입에서 일어나고, 이는 어떤 화학적 소화가 동반되기도 한다. 입 안의 침은 전분을 더 작은 다당류로 가수분해하는 효소 아밀라아제를 함유하고 있다. 기계적 소화는 음식을 더 작은 조각으로 부수어 이후에 화학적 소화가 더 많은 표면적에 작용하도록 하는 데 중요하다. 


게다가 기계적 소화만이 아니라 화학적 소화의 대부분이 위에서 일어난다. 위장의 근육벽은 음식을 휘젓고, 섭취된 유기물을 그 구성성분으로 분해하고자 강산과 효소를 모두 방출한다. 위장은 부분적으로 소화된 음식을 소장으로 보내 더 많은 소화가 일어나고 과정의 다음 단계 -아미노산과 단당 같은 더 작은 분자의 흡수- 가 시작되게 한다.


농업 생산에 이용되는 많은 동물은 먹이가 소장에 들어가기 전에 소화시키기 힘든 먹이를 분해하는 기계적, 화학적 소화에 도움이 되는 특화된 위장이나 추가의 기관을 가지고 있다. 닭, 오리, 칠면조 같은 조류는 입부터 먹으면서 먹이를 저장할 수 있는 모이주머니까지 보낸 다음 두 부분으로 나뉜 위장으로 가게 한다. 하나는 주로 화학적 소화를 담당하는 "진정한" 위장이고, 다른 하나는 화학적, 기계적 솨화를 모두 수행하는 모래주머니이다. 반추동물(예, 소, 염소, 양)로 알려진 동물은 상리공생하는 미생물이 효소로 식물의 물질을 소화시키는 4개의 방으로 나뉜 위장이 있다. 소는 섭취한 풀의 일부를 게워서 다시 씹어서, 식물의 섬유질을 더욱 분해하고 미생물의 작용이 더 유용해지도록 만들 수 있다. 반추동물은 게워낸 풀과 혼합되지만 상실된 걸 대체할 만큼 빠르게 번식하는 상리공생 유기체를 소화시켜 많은 양분을 얻는다.


동물 위장의 배열에 상관없이, 그것이 처리한 먹이는 다음으로 소장에 보내진다. 포유류에서 소장의 첫 번째 짧은 부분은 십이지장이라 한다. 위장에서 보내진 혼합물이 여기에서 췌장, 간, 담낭에서 나온 소화액과 섞인다. 대부분의 효소 가수분해는 양분 흡수의 대부분과 함께 소장에서 일어난다. 양분은 장 내부의 벽에 있는 솜털 같은 내벽을 통해 흡수되어, 대사 체계의 나머지 부분으로 운송되기 위해 내벽의 근저에 있는 미세한 혈관이나 모세혈관으로 들어간다. 양분이 풍부한 혈액을 내벽으로부터 멀리 옮기는 모세혈관과 혈관은 모두 간과 다음으로 심장,그리고 마지막으로 기타 조직과 기관으로 이어지는 혈관으로 모인다. 간은 두 가지 주요한 기능을 제공한다. 하나는 신체의 나머지 부분에 양분이 분배되는 걸 조절한다. 간을 떠나는 혈액의 양분 균형은 들어온 것과 매우 다를 수 있다. 둘째는 혈액이 더 널리 순환되기 전에 간에서 독성 물질을 제거한다. 


소화관은 결장과 맹장, 직장을 포함하는 대장에서 끝난다. 소장은 한 길은 결장으로 가고 -그런 다음 소화기의 마지막 폐기물을 제거하는 직장과 항문으로 감- 다른 길은 맹장으로 가는 갈림길에서 대장과 연결된다. 많은 양의 식물 물질을 먹는 동물에게 맹장은 섭취한 물질을 발효시켜 완전히 소화될 수 있도록 하기에 중요하다. 맹장의 크기는 동물마다 다르다. 인간에게 맹장은 충수라고 불리는 흔적 기관이다. 결장의 주요 기능은 소화관에 들어가소화액의 용제로 이용된 물을 회복시키는 것이다. 평균적으로 소화기로 분비되는 액체의 약 90%가 소장과 결장에서 다시 흡수된다. 


대부분의 초식 포유류에게서 소장과 맹장은 인간보다 훨씬 발달되어 있는데, 일반적으로 식물 물질, 특히 셀룰로오스를 동물이 사용할 수 있는 단당과 기타 화합물로 소화시키는 데 도움이 되는 효소를 생산하는 상리공생의 미생물이 점유하고 있다. 예를 들어, 말은 그러한 박테리아가 있는 연장된 맹장을 가진다. 토끼와 일부 설치류에서,상리공생의 박테리아가 맹장과 대장에 모두 살고 있지만 대부분의 양분이 소장에서 흡수되기 때문에, 이들 동물은 먹이가 소장을 통과한 뒤 박테리아의 활동을 통해 생성된 재소화가 가능한 양분을 흡수할 수 있도록 제거된 배설물을 처음에는 다시 섭취할 것이다. 







동물의 양분 요구

앞서 논의했듯이, 동물은 그들이 소비하는 먹이에서 양분과 에너지 모두를 추출해야 한다. 그러므로 적절한 식사는 세 가지 필수 물질을 함유해야 한다. (1)세포의 과정에 힘을 불어넣을 수 있는 화학 결합에 많은 양의 에너지가 저장된 물질, (2)거대 분자와 조직을 위한 기본적 유기물 구성요소를 함유한 물질, (3)동물이 더 작은 부분에서 합성할 수 없는 물질이 그것이다(그림13.8).



그림13.8 멕시코 타바스코 우이만기요Huimanguillo의 심지 않은 목초지에서 자라고 있는 자생 및 비자생 식물의 다양한 집합에서 풀을 뜯고 있는 소. 초식성 반추동물로서 소는 그들이 필요로 하는 모든 양분을 제공하는 그러한 식생에서 방목되는 데 잘 적응되었다. 





세포 과정부터 온전한 동물의 움직임까지, 동물의 모든 활동은 식사에 있는 적절한 화학적 에너지원에 의존한다.이 에너지는 성장과 발달부터 이동과 보온에 이르는 과정에 힘을 불어넣는 ATP를 생산하는 데 사용된다. ATP에대한 지속적인 요구는 탄수화물, 단백질, 지질로 구성된 먹이를 섭취하고 소화시켜서 충족하며, 이들 모두는 ATP를 생산하기 위해 분해될 수 있다. 


2장에서 논의했듯이, 종속 영양 생물(또는 소비자)은 다른 유기체에 의해 생성된 유기물의 섭취를 통해 전적으로에너지와 바이오매스 구축 요구를 충족시켜야 한다는 사실에 생태학적 중요성이 있다. 동물에 의해 소비된 식물 물질에 있는 에너지의 대부분이 기본적인 신진대사와 유지에 이용되기 때문에, 식물 바이오매스를 동물 바이오매스로 전환하는 전체 효율은 매우 낮다. 기껏해야, 광합성을 통해 식물 물질에 저장된 에너지의 약 10%가 동물 바이오매스로 전환된다(그림2.2 참조). 초식성 동물의 바이오매스를 육식성 동물의 바이오매스로 전환하는 것도 마찬가지로 비효율적이다. 영양 단계 사이의 이러한 에너지 "상실"의 결과와 그에 따라 그것이 생성하는 에너지 발자국에 대해서는 19장에서 논의할 것이다.


에너지를 함유하고 있는 화합물 이외에도, 초식동물의 식사는 생합성에 필요한 모든 원료도 포함되어 있어야 한다. 동물이 성장하고, 자신을 유지하며, 번식하기 위해 필요한 복합분자를 조립하려면 두 가지 유형의 유기 선구체가 대량으로 필요하다. 유기 탄소(당과 탄수화물 같은)의 원천과 유기 질소(단백질 같은)가 그것이다. 이들 물질은 동물 바이오매스를 구성하는 다양한 유기 분자의 주요한 구성요소이다. 다른 요소들은 소량으로 필요하다. 일부 아미노산의 조립을 위한 황, 핵산의 생선을 위한 인, 헤모글로빈을 만들기 위한 철, 갑상선 호르몬을 위한 요오드 등이 그것이다. 


모든 동물은 유기 탄소와 질소 및 기타 요소로부터 합성할 수 있는 거대 분자의 종류에 한계가 있다. 예를 들어 동물은 단백질을 만드는 데 필요한 20개의 아미노산 가운데 약 절반만 합성할 수 있다. 동물이 합성할 수 없는 아미노산은 먹이를 통해 얻어야 한다. 이를 필수 아미노산이라 부른다. 대부분의 동물은 적절한 양분 섭취를 위해 8가지 아미노산이 필요하다. 육류, 치즈, 알 같은 동물에 의해 생산된 축산물에 있는 단백질은 필수 아미노산을 모두 포함하고 있어서 "완전" 단백질이라 부른다. 식물성 단백질은 보통 필수 아미노산이 부족하여서 "불완전"단백질이라 부른다. 예를 들어, 옥수수는 트립토판과 라이신이 부족하고, 콩은 메티오닌이 부족하다. (둘을 합치면 채식을 하는 동물이 모든 필수 아미노산을 얻을 수 있는 방법이다.)


동물이 합성할 수 없는 또 다른 종류의 유기 분자는 지방산이다. 이런 이유로 그들도 필수로 분류된다. 리놀레산은 인간과 다른 동물이 만들 수 없는 지방산의 좋은 예인데, 균형 잡힌 식사의 일부인 씨앗과 곡류 및 채소에 의해 공급된다. 비타민은 합성할 수 없는 유기 분자의 또 다른 중요한 범주이다. 수용성 또는 지용성으로 구분되는 각각의 비타민은 다양한 대사 과정에서 보효소로 기능하는 것부터 혈액이 응고되도록 하는 것에 이르기까지 다양하고 중요한 역할을 한다. 하지만 동물은 합성 능력에 차이가 있기 때문에 그들의 식사에서 비타민에 대한 요구가 다양하다. 예를 들어, 대부분의 동물은 비타민C를 합성할 수 있지만 인간과 기니피그, 일부 조류는 그들의 신체에서 만들 수 없기 때문에 필수 양분이다. 


마지막으로, 동물은 삼투 균형과 신경 자극의 전달에서 그 역할 때문에 거대 분자의 합성에 필요하지 않은 특정 미네랄 -나트륨과 칼륨 같은- 을 필요로 한다. 


필수 용제로 기능하며 그것이 없으면 생명이 존재할 수 없는 물과 함께 이런 필수 양분 모두는 농업이 의존하게 된 동물을 위해 적절한 식사를 개발하는 데 토대를 형성한다.  





먹을거리와 섬유 생산에 사용되는 동물들의 주요한 변이

앞서 말한 논의에서 볼 수 있듯이, 인간이 먹을거리와 섬유의 생산을 위해 이용하는 가축화된 동물은 광범위하게변화하는 생리학적 구성을 갖는다. 가축화에 앞서 진행된 진화와 적응을 기초로 하여, 동물의 각 유형은 특정한 종류의 식사를 먹는 데 적응된 소화기가 있다. 가축화와 선발육종은 육류, 젖, 알, 섬유 및 기타 축산물의 생산에이용되는 동물의 이러한 기본적인 생리학적, 해부학적 측면을 크게 변경시키지 못했다. 


가축화된 동물의 "자연적인" 식사는 농업생태게에서 먹을거리와 섬유의 생산을 위해 이들 동물을 활용할 때 큰 문제가 된다. 농업생태계의 관리자가 작물이 허용하는 다양한 환경 조건과 그들의 서로 다른 양분 요구를 고려해야 하는 것처럼, 생산 체계에서 어떻게 동물의 기본적 생리를 특정한 역할에 맞출 것인지 고려해야 한다. 


여러 방이 있는 위장과 소화에서 박테리아의 효소를 활용하는 능력을 가진 소와 양, 염소 같은 반추동물은 복잡한 탄수화물 셀룰로오스를 소화시키는 탁월한 능력이 있다. 그들은 방목이나 잎을 뜯어먹는 데 적응하여, 인간이소화시킬 수 없는 셀룰로오스로 구성된 많은 양의 식물 물질을 먹는다. 이와 관련하여 반추동물은 인간의 입장에서 중요한 기능을 수행한다. 그들은 인간이 소화시킬 수 없고 영양가 없는 바이오매스를 먹을 수 있을 뿐만 아니라 고단백의 바이오매스로 전환시킨다. 


그러나 산업형 농업에서 반추동물 생리학의 이러한 매우 유용한 자질은 최종 산물의 효율적 생산에만 편견을 두어 무시된다. 1장에서 논의한 공장식 사육시설(CAFO)에서, 소들은 더이상 그들이 자연에서, 또는 개선된 목초지 체계에서 먹던 것과 유사한 식물 물질을 먹지 못한다. 옥수수와 콩으로 구성된 에너지와 단백질이 풍부한 사료가풀과 콩과식물을 대신한다. 이는 동물의 소화장애와 많은 메탄가스의 배출, 많은 양의 분뇨 축적을 포함하는 몇몇 부정적 결과를 가져온다. 더 나아가, 이런 사료를 생산하는 데 활용되는 작부체계는 그런 부정적 결과와 함께 규모의 문제와 생태학적 충격을 모두 가져오는 대규모 단작이다. 동물의 생산과 작물 생산 사이의 연결은 극도로밀접한데, 우리가 보게 될 것처럼 농생태학의 접근법은 지속가능한 상호의존성을 생성하는 체계에서 작물과 동물을 더 잘 혼합시키는 통합된 농사 체게로 돌아가는 것이다. 그러한 체계는 19장에서 논의될 것이다. 


먹을거리를 위해 가장 널리 활용되는 두 가지 가축화된 동물 -돼지와 닭- 은 잡식성이다. 이들 동물은 잎과 줄기,열매, 씨앗 등을 소비할 수 있는데, 기회가 주어지면 동물성 먹이를 이용할 수 있다. 이러한 식사의 다양성은 농업생태게에서 많은 이점을 지닐 수 있다. 예를 들어, 돼지는 풀과 콩과식물이 다양하게 파종된 목초지에서 사육될 수도 있지만, 방목되는 동안 곤충과 지렁이 및 때때로 맞닥뜨릴 수 있는 설치류를 찾아 토양을 파헤칠 수도 있다. 또한 돼지는 그들이 아주 잘 먹는 잎과 버섯, 애벌레, 뿌리, 견과류, 지렁이 및 열매가 있는 숲에서 사육될 수도 있다. 이와 마찬가지로 광범위한 식사와 먹이를 찾는 능력을 가지고 있지만 그 충격은 적은 땅파기 행위를 하는 닭은 다양한 소규모 농업생태계에 성공적으로 통합되어 식물의 해충을 먹고, 질소와 인이 풍부한 분뇨를 남기며, 알이나 육류 또는 둘 다 제공할 수 있다. 예를 들어, 그들은 18장에서 설명하는 가정의 텃밭 체계에서 이런 방식으로 이용된다.


그러나 소들이 그러하듯이, 돼지에 대한 현대의 공장식 사육시설은 그들은 식물 기반의 식사로 완전히 이동시켰고, 이는 소에 대해 기술한 것과 마찬가지의 쟁점과 문제가 있다. 닭과 칠면조도 주로 옥수수와 대두로 구성된 식사에 기반한 공장식 사육시설에서 사육된다. 선발육종이 질병의 영향 없이 곡물에 기반한 식사를 견딜 수 있는 가금류 품종을 생산했지만, 공장식 사육시설에서 조류를 사육하는 일은 그들의 잡식성이 지닌 생태학적 혜택을 무시하게 된다. 


다양한 다른 동물들이 그들의 먹을거리를 생산하는 능력만이 아니라 그들이 담당하는 중요한 생태학적 역할 때문에 농업생태계에서 활용된다. 예를 들어, 물고기는 수천 년 동안 아시아의 전통적 논 체계에서 이용되었다. 그들은 먹을거리를 위해 수확될 뿐만 아니라 해충을 방제하고 양분을 순환시키는 중요한 역할도 수행한다. 곤충조차 먹을거리를 생산하고 중요한 기능을 수행하기 위해 농업생태계에 통합된다. 꿀벌과 누에가 두 가지 좋은 사례이다. 우린 19장에서 통합된 식물-동물 농업생태계의 생태학을 더 상세히 살펴볼 것이다. 


표13.1은 지속가능한 동물 생산과 통합된 농업생태계의 설계에서 고려해야 할 가축화된 동물의 특질을 요약한 것이다. 


동물

영양 역할

소화기

자연의 식사

생산물

초식성

반추동물;4개의 방

방목자; 풀과 기타 초본

고기, 젖, 가죽

초식성

위장;셀룰로오스 소화

방목자/중간자; 풀, 작은 가지, 잎

고기, 젖, 양털

염소

초식성

위장; 셀룰로오스 소화

뜯어먹는자/중간자; 식물의 잎과 줄기

고기, 젖

돼지

잡식성

간단한 위장

뿌리, 열매, 잎, 견과류(도토리), 지렁이, 애벌레, 버섯 등

고기, 가죽

닭, 칠면조

잡식성

위장에 추가로 모이주머니와 모래주머니

잎, 씨앗, 곤충, 열매, 지렁이, 달팽이 등

고기, 알

물고기

종에 따라 다름

다양함

다양함; 대부분 조류나 폐기물을 먹음

고기, 사료

1차 소비자

소화기 또는 소화관

꿀과 꽃가루

꿀, 꽃가루, 프로폴리스

누에

초식성

소화기

뽕잎

비단

표13.1 농업생태계에서 활용하는 동물의 생리학적 특성







생각거리


1. 식물성 근원에서 얻은 단백질과 동물성 근원에서 얻은 단백질 사이의 농생태학적 차이점은 무엇인가?


2. 오늘날 목초지에서보다 사육시설에서 소고기를 생산하는 데 관심이 많다. 이렇게 함으로써 얻는 이점에 대해 설명하라. 


3. 우리는 종속 영양 생물과 그들의 식물 협력자 사이의 절대 상리공생이 먹을거리 체계의 지속가능성에서 중요한 역할을 할 수 있도록 농업생태계를 어떻게 설계할 수 있는가?


4. 인간이 소비하기 위해 야생 동물을 사육할 수 있게 하는 농업생태계는 어떻게 설계할 수 있는가?







인터넷 자료


Honey Bees and Colony Collapse Disorder 

http://www.ars.usda.gov/news/docs.htm?docid=15572

The US Department of Agriculture’s website for information, data, and research on the honeybee colony collapse disorder, with annual reports of colony losses and research on possible explanations for the problem.

 







읽을거리


Abrol, D. P. 2012. Pollination Biology: Biodiversity Conservation and Agricultural Production. Springer Verlag: Berlin, Germany. 

A comprehensive examination of the processes and mechanisms of pollination, the role of pollinators in natural and agricultural environments, and the challenges presented by invasive species, genetic engineering, and loss of biodiversity. A special emphasis on bees and their role in food security and livelihoods for people.


Bronstein, J. L. 2009. Mutualism and symbiosis. In S. A. Levin (ed.) Princeton Guide to Ecology. Princeton University Press: Princeton NJ, pp. 233–238. 

A useful entry in an encyclopedia of ecology, discussing the state of knowledge on ecological aspects of mutualism and symbiosis, and providing references to important background in the field.


 Garcia-Espinosa, R. 2010. Agroecología y Enfermedades de la Raiz en Cultivos Agrícolas. Editorial del Colegio de Postgraduados: Montecillos, Mexico. 

For those who read Spanish, this is the most complete treatment of how an agroecological approach is the key to managing pathogenic root fungi, and where heterotrophic fungi are considered as part of the larger agroecosystem. 


Holecheck, J. L., R. D. Pieper, and C. H. Herbel. 2010. Range Management: Principles and Practices. 6th edn. Prentice Hall: Upper Saddle River, NJ. 

The most up-to-date source of information on range management, with its strongest emphasis on the management of grazing itself. It also presents comprehensive information on highly relevant issues such as range animal behavior, economics, energy, and multiple use environments. 


Ruechel, J. 2012. Grass-Fed Cattle: How to Produce and Market Natural Beef. Storey Publishing: North Adams, MA. 

Covers every aspect of raising grass-fed cattle, from the selection and care of the animals to possible organic certification. A very important guide to getting off of feed-lot production systems. 


Schaller, A. 2010. Induced Resistance to Insect Herbivory. Springer Verlag: New York. 

A detailed look at how plants develop resistance to the multitude of herbivorous insects that exist in natural ecosystems.

728x90

유기농업이나 친환경농업, 자연농업 등에 관심이 있는 사람이라면 한번쯤 "토양 생물이 중요하다"는 이야기를 들어보았을 것이다.


그런데 그들이 어떤 역할을 하는 것인지 머리로는 알아도 눈으로 직접 보는 것보다는 못하리라. 그래서 백문이 불여일견이라는 말도 있는 것 아니겠는가? 인간은 시각적 자료와 효과에 가장 민감한 법이다.


어디 한번 토양 생물이 어떤 일을 하는지 직접 보자.

한쪽은 토양 생물이 없는 대조군이고, 다른 한쪽은 토양 생물이 활동하는 장이다.

보름에 걸쳐 어떠한 일이 발생하는지 비교해 보자.

그리고 논밭에서 이런 생물들이 잘 살 수 있는 환경을 조성해주는 게 왜 중요한지 이야기해 보자.


Bioturbation with and without soil fauna from Wim van Egmond on Vimeo.


728x90

  1. 목차


    이사의 편지 / 머리말 / 전체 요약 / 배경 / 유기농 무경운과 롤러 크림퍼 / 로데일 연구소의 유기농 덮개 실험


  2. 결과

    덮개작물 투입재 / 토양의 질에 대한 효과 / 풀 통제 / 수확량 / 폐기물 생산 / 수익성 / 결과 요약


    협력 농민의 사례 연구

    Genesis 농장 / Swallow Hill 농장 /Meadow View 농장 / Quiet Creek 농장


    유기농 무경운 체계를 시행하기


    출처

    용어 설명

    참고 도서

    추가 문헌






이사의 편지


로데일 연구소는 J.I. Rodale 씨가 1947년 칠판에 우리의 좌우명을 처음 적은 이후 농업을 통해 세계를 더 나은 곳으로 만들기위해 전념해 왔다. 건강한 토양 = 건강한 먹을거리 = 건강한 사람이 우리의 모든 사업을 추동한다.그것이 우리가 모든 노력을 시험하는 시금석이다. 


그래도 J.I. 씨는 건강한 토양이 건강한 먹을거리를 기르기 위한 토대라는 사실을 이해했다. 우리는 오늘 J.I. Rodale 씨의 신념과 Robert Rodale 씨의 수고로 펜실베니아 주 커츠타운Kutztown 외곽에 333에이커 규모의 농장에뿌리를 내리고 계속하고 있다. 


로데일 연구소에서 수행한 연구와 홍보활동은 건강한 토양을 기반으로 하는 농업 체계를 창안하기 위함이다. 60년이 넘는 기간에 걸쳐, 우리는 유기농업을 연구하고 세계의 농부와 과학자들과 의견을 나누면서 재배자를 지원하는 정책을 지지하고 있다.  


지난 수십 년 동안 가장 보람찬 발전 가운데 하나는 유기농 농민을 위한 모범사례를 시험하고 개발하면서 모든 농민들이 채택할 수 있는 기술과 방법을 찾았다는 점이다. 


이 특별 프로젝트를 통해 우리는 유기농업 체계에서 경운과 검은비닐의 사용만이 아니라, 무경운 관행농업 체계에서 제초제의 사용과 관련된 토양의 건강 문제를 해결할 수 있다는 걸 발견했다. 목표는 경운과 검은비닐의 대안으로 유기농 농민들이 무경운의 혜택에 접근할 수 있는지와 모든 농민들이 풀을 관리하고 좋은 덮개작물을 죽이기 위하여 검은비닐과 제초제 이외의 도구를 제공할 수 있는지의 여부를 결정하는 것이었다. 


모든 농민들이 그들의 토양을 보호하고 보존하며 시간과 돈을 절약할 수 있는 새로운 방법을 모색함으로써, 기존의 체계 안에서 창의적으로 가능성을 탐구하는 공동 연구가 필요하다. 관행농업과 유기농업 공동체 사이에 지식을 공유하는 일을 더욱 증진시키고, 그 결과를 연구하는 일은 예상보다 더 강하고 탄력적인 농업을 창출하는 데 필수적이다.  


최고의 과학적 연구와 교육을 통하여 우리는 더 지속가능한 먹을거리 체계를 향한 모든 농민의 여정을 지원할 수 있기를 바란다. 


Coach Mark Smallwood





머리말


1988년부터, Northeast SARE는 농사에 대한 지속가능한 접근법을 발전시키고자 교육과 응용연구를 목적으로 보조금을 제공해 왔다. 그 25년은 많은 학습과 많은 성공만이 아니라 도전도 가져왔다. 변화는 위험할 수 있기에 혁신이 늘 쉬운 건 아니다. — 잘 알려진 사례와 결점, 모든 것이 광범위한 지원을 제공하는 경우가 많다. 덮개를 너무 빨리또는 너무 멀리 덮으면 참여하고자 하는 우리의 매우 많은 수혜자들이 멀어지게 할 수 있다.


그 결과, Northeast SARE는 수혜를 원하는 농민들과 협력 관계를 맺고, 그들에게서 의견을 구하고자 했다. 제안의 계획부터 실행과 결과의 공유까지 공동의 노력으로 간주되었다. 이 과정은 수혜자와 이해관계자 사이의 관계를 강화하고, 과학자부터 생산자뿐만이 아니라 다른 모든 방향으로 흐르는 학습 공동체를 구축한다. 


SARE의 초창기에 이러한 연구 모델을 받아들이도록 특정 종류의 기관이 필요했다. 토지를 허가하는 몇몇 대학과로데일 연구소 같은 소수의 미래지향적 기관들이 이를 보완했다. 로데일을 포함한 초기의 협력자 가운데 상당수는 SARE와 지속적으로 관계를 맺어 오랜 세월에 걸쳐 일련의 혁신적인 아이디어를 모색하고 협력적인 농민 네트워크를 구축했다.


1988년, SARE가 활동한 첫 해에 로데일 연구수는 비디오를 활용해 농민들이 지속가능한 농법을 어떻게 채택할지 실제로 “보게” 하자는 아이디어를 제안했다. 그 이후 로데일은 작물의 수확량과 질병을 관리하기 위한 덮개작물과 무경운, 유기농 곡물 생산, 퇴비 또는 퇴비차의 활용을 탐구하기 위한 일에 대한 보조금을 받았다. 가장 최근에 로데일은 채소 생산에서 호밀-베치의 사이짓기 효과로 풀을 억제하는 동시에 토양의 질소를 증가시키는 연구에 대한 자금을 지원받았다.  


이 프로젝트는 우리의 보조금 검토자들과 공감하는 특성을 보여주었다: 한 가지 농법을 수정하는 점진적 변화를 뛰어넘어 작부체계를 재설계하는 시험이다.  이 사례에서 전체의 목표는 비닐 덮개의 사용을 제거하는 것만이 아니라, 콩과의 질소를 제공하는 동시에 토양 건강의 물리적 측면을 향상시키는 것이 포함된다. 좋은 SARE 프로젝트와 마찬가지로, 농민들은 여러 해 동안 연구 활동에 종사하고 있다. 


Northeast SARE의 교부금을 받고 있는 로데일의 성공은 농업의 체계에 접근하는 방법을 활용해 지속가능한 농업을 연구하는 능력에 달려 있다. 단일 작물, 단일 해충 또는 생산에 대한 단일 장벽에 집중하는 편이 더 쉽고 예측이 가능하다. 공간과 시간에 따라 달라지는 전체 농장의 상호작용을 조사하고 이해하는 일은 훨씬 어렵다. 우리는 이러한 지적 야망을, 특히 새로운 아이디어가 합리적으로 채택될 만큼 현실적으로 근거가 충분할 경우에 칭송한다.  Northeast SARE의 성공은 혁신을 촉진하기 위하여 우리가 제공하는 자금을 사용하는 수혜자 —협력자— 에게 달려 있는데, 항상 우리가 봉사하고자 하는 농촌 지역사회와 협력한다. 



vern grubinger, Northeast SARE 지역 코디네이터








배경


잡초 방제는 세계 곳곳의 여러 농민들이 여러 세대 동안 직면한 주요한 과제의 하나이다. 1940년대 제초제가 도입되기 이전에는 경운과 수작업 및 세계의 일부 지역에서는 물대기를 통해 잡초의 성장을 억제하는 기술이 활용되었다. 1970년대 인구 성장과 함께 매우 급속하게 제초제가 사용되면서 이제는 그것이 잡초를 방제하는 주요한 방식이 되었다. 

오늘날 대부분의 관행농민들은 경운과 제초제를 조합하는 방식으로 잡초를 처리한다. 이러한 기술은 잡초의 개체수를 낮추는 데 매우 효과적이면서, 토양과 환경 및 인간의 건강에 여러 가지로 악영향을 미친다. 토양을 교란하고 제초제를 살포해 토양 생태계에 손상을 가하고, 물을 흡수하고 유지하는 능력 및 양분을 저장하고 순환시키며 좋은 토양의 구조를 유지하는 능력을 떨어뜨린다. 그 결과 침식과 양분의 침출이 발생하기 쉬워지고, 농경지에서 소중한 물질이 제거되며 이 물질들이 흘러가 수자원에 피해를 준다. 또한 토양 생물에 미치는 영향으로, 경운이 쟁기바닥층을 두텁게 형성해 뿌리의 성장과 물의 흐름을 방해할 수 있다. 일부 제초제는 유실되어 하천과 호수 등에 흘러 들어가거나 지하수에 침출되면 환경과 인간의 건강에 해를 끼칠 수도 있다.

1950년대에 검정비닐 덮개가 풀을 억제하는 데 도움이 되는 또 다른 농자재로 시장에 도입되었다. "검정비닐"로 간단히 언급되는 검정비닐 덮개는 석유로 만드는 얇은 플라스특 막으로서, 농민들은 두둑의 표면을 덮고 그 아래로 관개용 관을 설치하곤 한다. 작물은 손이나 농기계로 비닐의 구멍에 옮겨심는다. 비닐은 영농철 막판에 농경지에서 제거하여 폐기한다. 

검정비닐은 그것을 덮은 곳에서 풀이 자라는 걸 매우 효과적으로 방지한다. 맨흙에 채소를 재배하는 것과 비교하면, 검정비닐을 사용했을 때 제초제를 친다거나 노동집약적인 수작업 제초 같은 노력을 매우 경감시킨다. 검정비닐의 또 다른 장점은 토양을 따뜻하게 만들어 파종 시기를 앞당긴다는 점이다. 이러한 이유 때문에 검정비닐은 지난 50년 동안 큰 인기를 얻었다. 


건강한 토양 생물군의 중요성


 건강한 토양은 작물과 농민에게 여러 혜택을 제공하는 다양한 미생물 들이 포하되어 있다. 이러한 박테리아와 원생동물, 선충류, 곰팡이, 미세 절지동물 등이 식물의 잔류물을 분해하고, 토양의 응집력과 다공성을 향상시키며, 토양 유기물과 미네랄의 영양소를 식물이 이용할 수 있는 형태로 순환시키고, 식물을 병원균에게서 보호한다. 그 결과 건강한 토양 생물군과 함께 자라는 식물은 질병 저항성이 더 좋아지고, 가뭄이나 혹서 같은 스트레스에 더 잘 대처할 수 있다. 농지는 수분을 흡수하고 유지할 수 있으며, 침식이 될 가능성이 더 낮아진다.




그러나 검정비닐에는 단점도 있다. 유기농업에서도 허용되기는 하지만, 석유로 만들고 재활용이 어려워 본질적으로 지속가능하지 않다. 검정비닐을 사용하는 농경지 1200평당 45-55kg의 폐기물이 발생한다. 게다가 검정비닐을 사용하면 농경지 표면의 50-70%가 물이 침투할 수 없게 되어 유실과 침식이 각각 40%와 80% 증가한다. 그리고 검정비닐을 사용하는 곳에 제초제와 살충제를 살포하면, 농경지에서 유실되는 이러한 화학물질의 농도가 높아져 환경과 인간의 건강에 더 많은 해악을 미친다. 마지막으로 한여름 검정비닐에 덮힌 토양의 온도가 높아지면서 토양생물군을 균류가 아니라 박테리아 쪽으로 바꾸어 놓으며, 미생물의 스트레스를 높이는 것으로 밝혀졌다. 검정비닐은 1200평당 연간 250-300달러, 폐기에 1200평당 20달러의 비용을 발생시키기도 한다.

이러한 이유들 때문에 연구자들은 검정비닐 덮개의 대안으로 덮개작물 덮개 체계를 탐구해 왔다. 풀깎개, 롤러 크림퍼 또는 덮개작물을 베어 덮개로 바꾸는 농기계를 포함하여, 몇 가지 덮개작물 기반의 채소 생산체계가 과학적으로 개발되고 논의되었다. 



검정비닐이 토양의 질을 손상시키는 반면, 덮개작물 덮개는 토양에 유기물을 첨가하고 토양미생물을 증가시킴으로써 그를 향상시킨다. 연구자들은 지표면에 덮개작물의 잔류물을 남기면 작물의 "질병 저항성이 높아지고, 활력이 증가하며, 상품성 있는 수확량이 높아지고, 작물의 노화가 늦추어진다"는 사실을 밝혔다. 이러한 체계는 검정비닐보다 비용이 적게 들며고 실행이 더 빠르며, 농사가 끝난 뒤 그를 제거하고 폐기하는 데 비용과 노동력이 들지 않는다. 

연구자들이 덮개작물 덮개 체계의 유효성을 개발하고 시연하는 데 큰 진전을 이루었지만, 개발된 체계의 대부분은 덮개작물이 제공하는 잡초 방제를 보충하고자 합성 제초제에 어느 정도 의존하고 있다. 이러한 이유 때문에 로데일 연구소의 연구자들은 잡초를 억제하기 위해 제초제가 필요하지 않은 덮개작물 체계를 개발하는 데 몰두해 왔으며, 유기농업만이 아니라 관행농업의 채소 생산자도 덮개작물 덮개를 활용할 수 있도록 더욱 발전시켰다. 


John teasdale 씨와 Aref abdul-Baki 씨의 작업

John Teasdale 씨와 Aref Abdul-Baki 씨는 모두 미국 농무부의 식물 생리학자인데, 1980년대에 검정비닐의 대안으로 덮개작물 덮개를 탐구하기 시작했다. 그들은 토마토에 털갈퀴덩굴을 베어서 덮는 체계를 개발했다. 토마토를 심기 직전 털갈퀴덩굴을 베어내고, 농사철에 털갈퀴덩굴이 다시 자라는 것과 다른 풀을 통제하기 위해 1-2가지 제초제를 적용한다. 그들의 연구에서 이 체계에서 재배되는 토마토는 검정비닐에서 자라는 것보다 일반적으로 수확량이 더 낫고, 잎의 질병이 적으며, 상업적 비료가 더 적게 필요하다는 사실을 밝혔다. 또한 털갈퀴덩굴 덮개 체계는 검정비닐 체계에서 올리는 수익보다 2/3 정도 더 많은 수익을 올렸다. Teasdale와 Abdul-Baki 씨는 덮개작물 덮개 체계를 검정비닐 덮개의 대안으로 활용할 수 있다는 사실을 입증했을 뿐만 아니라, 이 체계가 토양과 식물, 환경에 유익하다는 사실을 증명했다. 




유기농 무경운과 롤러 크림퍼



유기농 무경운은 무엇인가? 


경운은 파종 전 풀을 관리하고, 거름과 작물의 잔류물을 넣으며, 토양을 개량하는 등의 준비를 하려고 활용되곤 한다. 경운은 때로는 토양 유기물의 분해를 매우 빠르게 촉진하기에 토양에는 좋지 않다. 또한 토양의 구조에 물리적인 손상을 가할 수 있고, 떼알구조와 침투 물길 같은 구조요소를 파괴한다. 경운은 토양을 뒤집기도 하여 토양생물을 교란시킨다. 그래서 유기농 무경운은 유기농업을 겨냥하여 비판을 하곤 한다. 너무 경운을 심하게 하여 토양을 교란시킨다고 말이다. 채소 농민은 특히 여러 번 작물을 심고 한해살이 풀을 관리하려고 1년에도 몇 번씩 토양을 경운한다. 


관행농민들은 제초제를 사용해 풀을 통제하고, 파종을 위해 특수한 무경운 농기구를 활용해 농지에서 경운을 줄이거나 하지 않을 수 있다. 제초제는 유기농업에서 선택할 수 없기에, 대부분의 유기농민은 풀을 통제하기 위해 경운에 크게 의존하며 토양을 경운하는 일로 비난을 받곤 한다. 롤러 크림퍼 같은 지난 20년 동안 개발된 새로운 기술과 도구는 유기농민이 그 생산 체계에서 경운을 줄일 수 있도록 한다. 


유기농 무경운은 세 가지 기본 원리에 근거한다. (1) 토양 생물이 체계를 강화하고, (2) 덮개작물이 비옥도와 풀관리의 근원이며, (3) 경운은 제한적이고 특정 간격으로 한다. 목적과 관념에서, 유기농 무경운은 다른 종류의 유기농법과 매우 비슷하다. 여기에는 유기물과 토양 생물로 토양을 개량하고, 다양하고 비화학적 수단으로 풀과 벌레 및 질병을 관리하며, 토양의 건강과 좋은 관리법을 통해 식물을 건강하게 한다는 것이 포함된다. 그러나 유기농 무경운은 이러한 목표를 달성하기 위하여 여러 방법을 활용한다. 토양을 건강하게 하고 풀을 관리하는 수단으로 경운을 대체하는 덮개작물에 훨씬 중점을 둔다. 




롤러 크림퍼(Roller-Crimper)


롤러 크림퍼는 로데일 연구소가 설계한 특별한 농기구로서, 농민들이 살아 있는 덮개작물을 덮개로 전환시킬 수 있도록 한다. 이 농기구는 덮개작물을 한쪽 방향으로 굴리고, 줄기를 부수어 쭈글쭈글하게 만든다. 적절하게 처리되면 식물체가 죽어 지표를 덮고 풀의 성장을 억제하는 고밀도의 잔류물 깔개를 남긴다. 


이 체계는 생물학과 기계학에 근거하기 때문에 어느 규모에나 적용할 수 있다. 작은 농장이나 큰 농장에서 모두 활용하기에 적합하다. 롤러 크림퍼는 트랙터와 말 뒤에서 끌 수 있고, 아니면 규모에 따라서는 손으로 밀 수도 있다. 트랙터의 앞이나 뒤에 장착할 수도 있다. 앞에 장착하면 무경운 드릴이나 말린 덮개작물에 직접 작물을 옮겨심는 도구를 트랙터의 뒤쪽에 자유로이 설치할 수 있다. 이런 방법으로 덮개작물을 끝내고 한번에 환금작물을 심을 수 있다.


풀깎개와 언더커터 같은 다른 도구도 덮개작물을 덮개로 전환시킬 수 있지만, 롤러 크림퍼는 그것들과 다른 몇 가지 장점이 있다. 연료가 덜 들고, 더 고르게 덮개를 만든다는 점이다. 풀깎개와 언더커터는 군데군데 덮개를 덮지 못하는 곳이 생기지만, 롤러 크림퍼는 땅바닥을 완전히 덮을 수 있는 깔개를 만든다.  



앞쪽에 장착한 롤러 크림퍼. 호밀과 베치 덮개작물을 토양의 깔개로 만든다.





덮개작물을 관리할 때 고려할 사항


덮개작물을 끝내고 다시 자라는 걸 막는 데 100% 성공하려면 굴리는 시기가 중요하다. 대부분의 덮개작물을 굴리는 정확한 시기는 식물에 꽃이 피거나 꽃가루를 생산할 때이다. 식물의 수명주기 가운데 이 단계일 때 매우 취약하여 롤러 크림퍼로 효과적으로 죽일 수 있다. 털갈퀴덩굴의 경우 적어도 75% 이상이 개화해야 하며, 100% 개화했을 때가 이상적이다. 펜실베니아 동부에서 겨울 호밀과 털갈퀴덩굴을 끝내는 적당한 시기는 보통 5월 말이나 6월 초이다. 


풀을 적절하게 통제하기 위해서는 개화기에 도달할 때까지 덮개작물의 바이오매스가 충분해야 한다. 덮개작물은 보통보다 씨앗을 많이 뿌리고, 건조물로 1200평당 약 3-4톤을 생산해야 한다. 이런 이유 때문에 바이오매스의 양이 많은 덮개작물이 무경운 체계에서 가장 잘 작동한다. 또한 탄질비가 20:1보다 높은 걸 선택하는 게 중요하다. 탄질비가 높을수록 탄소가 더 많아 더욱 천천히 분해될 것이다. 이는 농사철 내내 꾸준히 풀을 관리할 수 있도록 한다.  


수확 이후 남아 있는 덮개작물 잔류물은 땅속으로 넣고, 다음 농사철의 덮개작물을 재배할 수 있다. 따라서 농사는 이듬해를 계획하면서 가을에 시작된다. 이런 이유 때문에 유기농 무경운은 장기 계획이 필요하다. 



로데일 연구소의 Je Moyer 씨는 앞에 롤러 크림퍼를 장착하고 뒤에 무경운 파종기를 장착하여 덮개작물을 끝내는 동시에 곧바로 대두를 심는다.
 




 




로데일 연구소의 유기농 덮개 실험





로데일 연구소는 2009년 Northeast Sustainable Agriculture Research and Education(NE SARE) 프로그램의 지원금을 받아서, 토마토와 기타 채소의 생산에 일반적인 검정비닐과 굴리고 베어낸 덮개작물 덮개에 어떤 차이가 있는지 비교했다.  


이 연구의 목적은 서로 다른 덮개 체계의 영향이 어떠한지 측정하는 것이었다. 

1) 토양의 품질과 비옥도
2) 풀 통제
3) 수확량과 폐기물 생산
4) 중소규모 채소 생산의 수익성


덮개작물 덮개가 토양의 품질과 비옥도를 향상시키고, 검정비닐과 비슷하게 풀을 통제하고 수확량을 보여주며, 폐기물을 거의 또는 전혀 생산하지 않고, 채소 생산에 더 유리한 기술일 것이라 예상했다.



설계

 

로데일 연구소에서 행한 실험밭 설계는 아래와 같다. 각각의 처리법은 4번 반복되었다. 아래 표시된 색상과 패턴은 다음에 나오는 도표와 일치한다. 이 실험에서 총 9가지의 처리법이 있었는데, 각각 다음의 덮개작물과 종료법 가운데 하나가 조합되었다.


토마토는 밭마다 한 줄에 45cm 간격으로 심었다. 토마토는 전형적인 재배법처럼 지주를 박고 줄을 띄웠다.




실험밭은 로데일 연구소의 인증을 받아 2009년, 2010년, 2011년 가을에 설치하여 9가지 덮개 체계를 비교했다. 모든 실험밭은 쟁기질과 디스크 쟁기질, 다지기를 하고 9월에 각각의 밭에다 덮개작물을 넣었다. 덮개작물“Aroostook”이란 호밀과 “Purple Bounty”란 털갈퀴덩굴을 활용했다. 털갈퀴덩굴은 1200평에 16kg의 비율로, 호밀은 1200평당 76kg의 비율로, 호밀/털갈퀴덩굴은 1200평당 43kg(호밀 32kg, 털갈퀴덩굴 11kg)의 비율로 심었다.


덮개작물이 겨울을 나고 초봄에 다시 자라도록 한 뒤, 연구진은 처리법 방식에 따라 각각의 밭에서 덮개작물을 끝냈다. 검정비닐 처리법에서는 파종 한 달 전인 5월 초에  덮개작물을 갈아엎었다. 비닐 덮개와 관개호스를 쟁기질하고 몇 주 뒤에 설치했다. 다른 두 처리법에서 덮개작물은 5월 말이나 6월 초에 적어도 절반 정도 개화기에 이르렀을 때(꽃가루를 생산) 풀깎개나 롤러 크림퍼로 베어냈다. 이 시기는 보통 파종하기 1주일 전쯤이다. 


모든 처리구에서 똑같은 수준의 질소가 투입되도록 덮개작물의 양분 분석을 수행했고, 부족한 부분을 보충하여 거름을 주었다. 토마토는 6월 중순에 심었고, 상업용 토마토 생산의 표준안처럼 지주를 세우고 줄을 띄웠다. 점적관개 호스를 덮개 처리구에 더하고, 모든 처리구에 필요에 따라 관개를 했다. 수확은 8월 초에 시작해 10월 중순까지 계속되었으며, 일반적으로 일주일에 한두 번씩 행했다. 농사철 내내 연구진은 토양 수분, 토양의 상태(수분, 온도, 탄질비 등), 풀의 바이오매스와 토마토의 수확량(전체와 시장용)에 관한 자료를 수집했다. 


로데일 연구소의 현장내 연구 이외에도, 펜실베니아와 뉴저지의 협력 농민 4명이 2011년과 2012년 그들의 농장에서여러 덮개 방법을 실험했다. 이 농민들의 도움으로 연구진은 다양한 장소와 토마토, 고추, 수박, 호박, 양배추, 애호박 등 이들이 재배하는 여러 작물을 대상으로 덮개 체계를 실험할 수 있었다. 이러한 현장외 실험의 결과는 이 보고서의 사례 연구 부분에서 볼 수 있다.  



로데일 연구소의  2010년 실험밭. 왼쪽 밭은 호밀/털갈퀴덩굴과 함께 검정비닐을 덮고, 오른쪽 밭은 호밀/털갈퀴덩굴을 베어서 덮었다. 

 






결과 




덮개작물 투입량



덮개작물 바이오매스


이 처리법에서 덮개작물은 검정비닐 실험밭을 경운하는 시기에 맞추어 다른 두 가지 처리법의 덮개작물보다 더 일찍 종결시킨다. 그 결과 검정비닐 처리법의 덮개작물은 생육기간이 짧아져 갈아엎을 때 바이오매스가 더 적었다. 이는 털갈퀴덩굴 덮개작물만 파종한 밭에서는 관찰되지 않았다. 또한 호밀을 추가한 덮개작물은 털갈퀴덩굴만 심은 곳보다 더 많은 바이오매스가 생겼다.   



덮개작물 탄소 투입량


더 일찍 끝냄에 따라 바이오매스가 더 적게 생성된 결과, 검정비닐 처리법에서 덮개작물이 탄소에 기여하는 정도는 유기농 덮개 처리법에서보다 적었다. 이 효과는 털갈퀴덩굴이 검정비닐 실험밭을 경운하기 전인 초봄에 빠른 성장기를 지남에 따라 털갈퀴덩굴만 파종한 처리법에서 덜 관찰되었다. 그러나 호밀을 포함한 실험밭에서 굴리고 베어낸 처리법은 탄소에 기여하는 정도가 검정비닐 처리법보다 평균적으로 60.2% 높았다. 세 가지 서로 다른 덮개작물 사이에서도 탄소에 기여하는 정도에는 차이가 있었다. 털갈퀴덩굴만 파종한 덮개작물은 1200평당 평균 812kg의 탄소인데, 호밀과 호밀/털갈퀴덩굴 덮개작물은 1200평당 각각 평균 1565kg, 1510kg이었다. 



덮개작물 질소 투입량


3년에 걸쳐 덮개작물 질소 투입량은 호밀만 파종한 처리법에서 가장 낮았다. 호밀에 털갈퀴덩굴을 추가하면 질소 투입량은 2배로 늘었다. 



이 도표는 2011년 모든 처리구에서 덮개작물을 종결시키기 직전에 측정한 덮개작물의 바이오매스를 보여준다(에러바는 표준 오류를 나타낸다.)


 

이 도표는 아홉 가지 처리법 각각에서 덮개작물의 평균 탄소 투입량이 어떠한지 보여준다. 여기의 수치는 2010년, 2011년, 2012년의 평균값이다. 


 

이 도표는 아홉 가지 처리법 각각에서 덮개작물의 평균 질소 투입량이 어떠한지 보여준다. 여기의 수치는 2010년, 2011년, 2012년의 평균값이다. 




토양의 질에 미치는 영향


연구진은 농사철 동안 모든 처리법에서 토양의 수분과 온도를 측정했다. 토양의 탄소와 질소의 백분율은 각 농사철 전후에 처리법마다 측정했다. 


토양 수분

토양 수분은 굴리고 베어낸 처리법과 비교하여 검정비닐 처리법에서 더 낮았다. 검정비닐 실험밭은 점적 관개를 통해 수분의 대부분을 공급받았기 때문에, 이 차이는 검정비닐 실험밭에서 관개의 양이나 빈도를 증가시킴으로써 쉽게 교정할 수 있었다. 


2011년 농사철을 평균했을 때, 검정비닐로 덮은 지역은 토양 수분이 25%였는데 반해 굴리고 베어낸 지역은 모두 수분이 28%였다. 2012년 평균은 검정비닐에서 20%, 베어낸 처리법에서는 23%, 굴린 처리법에서는 22%였다. 



이 도표는 토양 수분 자료를 통해 관찰된 경향을 보여준다. 검정비닐 덮개로 덮은 두둑은 굴리고 베어낸 두둑보다 일반적으로 수분이 더 적었다. 이런 양상은 여러 표본 추출 날짜에 관찰되었는데, 항상 그런 건 아니었다.
 





 

 



토양의 온도

검정비닐과 덮개작물 덮개 사이의 토양 온도 차이는 농사철 초기에 더 컸고, 말미에는 매우 적었다. 6월과 7월에 검정비닐로 덮은 실험밭은 베어내고 굴린 실험밭보다 토양 온도가 더 높았다. 이런 차이는 농사철이 끝날 무렵(9월, 10월)에는 미미했다. 검정비닐 처리법에서 최고 토양 온도는 6월에 굴리고 베어낸 처리법보다 3.2도씨 더 높았고, 7월에는 2.2도씨, 9월에는 1.1도씨, 10월에 0.3도씨 더 높았다. 2012년 6월과 7월에 최저 토양 온도는 검정비닐 처리법에서 약 1.1도씨 더 높았다. 덮개작물 유형에 따라 토양 온도에는 차이가 없었다. 덮개작물 덮개는 토양 온도를 알맞게 유지시키고 시간에 따른 변동을 줄여서 토마토 생산에 유리하다. 


이 표는 2012년 6월부터 10월까지 세 가지 다른 종결 처리법에서 월간 최고와 최저 토양 온도를 요약한 것이다. 




토양의 양분: 탄소와 질소 백분율
로데일 연구소의 현장 토양에서 탄소와 질소의 백분율에는 관측할 수 있는 변화가 없었다. 그러나 2012년의 호밀/털갈퀴덩굴 덮개작물에서 굴리고 베어낸 처리법 모두에서 농사철에 따라 탄소의 백분율이 증가했다. 굴린 호밀/털갈퀴덩굴에서 증가한 양은 베어낸 호밀/털갈퀴덩굴 처리법에서 증가한 양의 2배였다. 

협력 농장의 실험에서, 4개의 농장 가운데 하나에서는 검정비닐 처리법에서 토양의 탄소 백분율이 약간 증가(0.22%)한 반면, 다른 곳에서는 굴린 호밀/털갈퀴덩굴에서 0.31% 증가했다.



이 도표는 2012년 로데일 연구소 실험밭의 농사철 이전과 이후의 토양 탄소 백분율을 보여준다. 호밀이나 털갈퀴덩굴만 파종한 곳에선 탄소 백분율에 별다른 변화가 없었기 때문에, 여기에서는 호밀/털갈퀴덩굴 처리법만 표시되었다.  

 




풀 통제


풀의 바이오매스는 토마토를 심고 4주 뒤에 측정했다. 2010년과 2012년, 풀의 바이오매스 표본을 추출한 지역은 두둑과 고랑 모두를 포함한다. 2011년, 풀의 바이오매스 측정은 두둑에서만 이루어졌다. 이는 2011년 모든 처리법에서, 특히 검정비닐 처리법에서 풀의 바이오매스 값이 더 낮아지는 결과를 가져왔다. 


2010년, 호밀과 호밀/털갈퀴덩굴 체계의 덮개작물 덮개 처리법에서는 풀의 압박이 거의 없었다. 호밀/털갈퀴덩굴 처리법 가운데, 굴리고 베어낸 체계에서 풀의 압박은 검정비닐 호밀/털갈퀴덩굴 처리법의 평균 5%에 불과했다. 굴리고 베어낸 호밀은 검정비닐 호밀에서 풀 압박의 평균 13%를 나타냈다. 덮개작물의 유형 가운데 털갈퀴덩굴이 풀의 성장을 억제하는 데 가장 효과적이지 않았다.  


2011년에 했듯이 두둑에서만 풀의 바이오매스를 측정했을 때, 검정비닐 처리법에서 풀의 바이오매스가 매우 낮았다. 호밀/털갈퀴덩굴과 호밀 체계에서는 굴린 실험밭이 베어낸 실험밭보다 풀의 바이오매스가 더 낮았다.


2012년, 각 덮개작물의 유형에서 굴리고 베어낸 처리법은 검정비닐 처리법보다 풀의 바이오매스가 더 높았다. 털갈퀴덩굴과 호밀 덮개작물 체계에서는 약 2배, 털갈퀴덩굴/호밀 체계에서는 약 3배였다. 


3년에 걸쳐 모든 처리법에서 풀의 바이오매스에는 변동이 있었다. 하지만 검정비닐 체계는 굴리고 베어낸 체계보다 더 일관적이었다. 검정비닐은 2011년과 2012년에 풀을 더 효과적으로 억제했는데, 굴리고 베어낸 체계가 2010년에는 더 우수했다. 굴림은 베기보다 일반적으로 풀을 억제하는 데에 더 효과적이었다. 모든 해에 호밀/털갈퀴덩굴 덮개작물 체계가 털갈퀴덩굴과 호밀 체계와 일치하거나 그 이상의 효과를 나타냈다. 



이 도표는 2010년 모든 처리법에서 토마토를 심고 4주 뒤에 측정한 풀의 바이오매스를 보여준다. 이 수치들은 두둑에서 성장한 풀만 나타낸다(고랑 제외).

 


이 도표는 2011년 모든 처리법에서 토마토를 심고 4주 뒤에 측정한 풀의 바이오매스를 보여준다. 이 수치들은 두둑에서 성장한 풀만 나타낸다(고랑 제외).


이 도표는 2012년 모든 처리법에서 토마토를 심고 4주 뒤에 측정한 풀의 바이오매스를 보여준다. 이 수치들은 두둑과 고랑에서 성장한 풀을 나타낸다. 

 

 




수확량 


토마토는 필요에 따라 일주일에 1-2번 수확했다. 전체 수확량은 모든 연도에 측정하고, 상품 수확량은 2011년과 2012년에 측정했다. 2012년, 잎마름병으로 토마토 수확이 확 줄어서 모든 처리법에서 전체 수확량과 상품 수확량에 영향을 미쳤다.  


전체 수확량

2010년, 굴리고 베어낸 덮개작물 처리법 모두가 검정비닐 처리법의 전체 수확량보다 더 많았다. 덮개작물 유형은 토마토 수확량에 큰 영향을 미치지 않았다. 


2011년 전체 수확량은 검정비닐 체계의 2010년 수확량과 비슷했지만, 유기농 덮개 체계에서 크게 감소했다. 전체 수확량은 검정비닐 처리법에서 더 많았고, 검정비닐 처리법 안에서 덮개작물의 유형은 수확량에 큰 차이를 일으키지 않았다. 유기농 덮개 체계에서 호밀/털갈퀴덩굴 덮개작물을 활용한 곳이 털갈퀴덩굴과 호밀 체계와 비교해 각각 2-2.5배 수확량이 많았다. 2011년의 결과는 호밀과 털갈퀴덩굴을 조합할 때 토마토 수확량에 시너지 효과가 있음을 보여주었다.


2012년의 전체 수확량은 잎마름병으로 크게 감소하였는데, 2011년에 관찰된 결과와 유사한 양상을 보였다.



상품 수확량

2011년, 상품 수확량은 전체 수확량과 평행을 이루었고, 각 처리법에서 평균 20% 감소했다. 굴리고 베어낸 호밀/털갈퀴덩굴 처리법이 검정비닐 호밀/털갈퀴덩굴의 약 70%에 해당하는 상품 수확량을 올려 검정비닐 처리법과 가장 경합을 했다. 


2012년, 잎마름병 때문에 전체 수확량의 23%만 상품성이 있었다. 굴리고 베어낸 털갈퀴덩굴 처리법이 가장 낮은 상품 수확량을 올렸고, 다른 전체 처리법 사이의 상품 수확량에는 큰 차이가 없었다. 


이 자료는 여러 덮개 유형이 토마토 수확량에 미치는 영향은 해마다 다를 수 있음을 시사한다. 덮개의 성능에 대한 이러한 연간 변화와 관련된 요소를 더 잘 이해하기 위해서는 장기간의 연구가 필요할 것이다.  


 

이 도표들은 2010년과 2011년의 전체 토마토 수확량을 보여준다. 2010년에는 덮개작물 덮개가 검정비닐 처리법보다 우수한 결과를 나타냈고, 2011년에는 그 양상이 바뀌었다. 





 


폐기물 생산


실험한 모든 체계의 모든 처리법에서 관개용 비닐호스를 사용했기 때문에 비닐 폐기물이 조금 생산되었다. 그러나 밭에서 꺼낸 비닐의 양은 검정비닐 처리법에서 1200평당 비닐 덮개 41.5kg에 비닐호스 14kg을 더해 4배나 많았다. 



수익성


비용

처리법에 따라 비용이 변동되었지만(가변 비용), 나머지는 모든 처리법에서 동일했다(고정 비용). 가변 비용에는 덮개작물 씨앗, 비료, 비닐 덮개, 장비의 이동, 비닐의 처분, 제초 인건비 등이 포함되었다. 고정 비용은 1200평에 총 9,668.26달러였는데, 여기에는 비닐호스, 지주, 끈, 토마토 씨앗, 상토, 포트에 줄을 띄우고 수확하고 심고 분류하는 인건비가 포함되었다. 


각 체계의 총 비용에서 가장 두드러진 차이는 덮개작물의 유형에 따라 발생했다. 털갈퀴덩굴 덮개작물 체계는 질소비료가 필요하지 않아 일반적으로 연간 비용이 가장 낮았다. 호밀 체계는 질소비료가 가장 많이 필요하여 보통 연간 비용이 제일 높았다. 검정비닐 처리법은 굴리고 베어내는 체계보다 실행하는 데에 일반적으로 비용이 많이 들었지만(평균 135달러 차이), 이에 대한 자료에 변동이 너무 많았다는 게 중요하다. 



수익

이 계산에서 토마토의 가격은 동부의 여러 대형 유기농 도매상의 보고서를 기반으로 한다. 매년 활용된 가격은 계절에 따른 토마토 가격의 평균이다. 연간 수익은 각 체계의 상품 수확량에 그해의 유기농 토마토 가격을 곱하여 계산했다. 상품 수확량은 실험의 첫해에는 측정하지 않았기 때문에, 2011년에 관찰한 바와 같이 20%의 도태율을 가정하여 추측에 근거해 2010년의 상품 수확량을 계산했다.


각 체계의 수익은 상품 수확량과 직접적으로 연관된다. 따라서 매출액은 체계와 해에 따라 크게 달라졌다. 각 처리법에서 가장 수익이 높은 건 2010년에, 가장 낮은 건 잎마름병 때문에 2012년에 관찰되었다.   



이윤

각 체계의 수익성은 해에 따라 다양했다. 모든 체계에서 가장 수익성이 높은 해는 2010년이었다. 굴리고 베어낸 체계는 검정비닐보다 훨씬 더 수익성이 좋아, 1200평당 평균 2만3천 달러의 수익을 올렸다. 베어낸 체계는 2010년에 일관적으로 가장 수익성이 좋았다. 유기농 덮개 체계에서는 털갈퀴덩굴과 호밀/털갈퀴덩굴 처리법이 호밀 처리법보다 연간 수익이 더 높았다.


2011년, 검정비닐 처리법은 2010년과 비슷한 수확량을 올렸지만 굴리고 베어낸 체계는 수익성이 훨씬 더 낮았다.검정비닐 처리법은 2011년에 가장 수익성 좋은 처리법이었다. 유기농 덮개 가운데 호밀/털갈퀴덩굴 체계가 가장 수익성이 좋고, 계절에 따라 순 손실이 일어나 호밀이 가장 낮았다.  


모든 체계는 2012년 잎마름병으로 순 손실이 발생했다. 이 해에는 수익이 관찰되지 않았다. 


해마다 수익성에 많은 변동이 일어났기 때문에 각 체계의 수익성을 고려하려면 3년 모두를 살펴보는 게 도움이 된다. 2010-2012년 동안을 평균으로 내면, 가장 수익성 높은 건 굴린 호밀/털갈퀴덩굴과 베어낸 호밀/털갈퀴덩굴 체계에서 달성되었다. (도표는 아래를 참조.) 


 

2010-2012년 평균 연간 비용, 수익, 그리고 1200평당 이윤

2010년에는 상품 수확량을 측정하지 않았기 때문에, 그해의 상품 수확량은 2011년에 관찰된 것과 같이 20% 도태율을 활용해 계산했다. 




더 많은 덮개작물 덮개 연구


이 연구가 로데일 연구소에서 진행되는 동안, 다른 곳에서도 유기농과 관행농 덮개작물 덮개 체계를 더 깊이 살펴보고 있었다. 몇 가지를 소개하면 아래와 같다.

 

털갈퀴덩굴 덮개작물에서 경운을 줄인 유기농 옥수수 생산Teasdale, J.R., S.B. Mirsky, J.T. Spargo, M.A. Cavigelli, and J.E. Maul 2012. Reduced-tillage organic corn production in a hairy vetch cover crop. Agronomy Journal 104:621-628

Teasdale 들은 풀씨가 저장된 양이 적을 때 굴려 죽이는 털갈퀴덩굴 덮개작물의 유기농 옥수수가 디스크쟁기로 죽인 털갈퀴덩굴의 옥수수보다 훨씬 수확량이 많다는 사실을 밝혔다. 


가을과 봄에 파종한 덮개작물 덮개가 호박의 수확량과 열매의 청결, 푸사리움 열매 썩음병 발달에 미치는 영향Wyenandt, C.A., R.M. Riedel, L.h. Rhodes, M.A. Bennett, and S.G.P. Nameth. 2011. hortTechnology 21:343-354

봄에 종결시킨 덮개작물 덮개에서 재배한 호박은 맨흙에서 생산한 호박보다 숫자와 무게에서 약간 더 높았다. 또한 이 실험밭의 호박들은 FFR(Fusarium solani f. sp. Cucurbitae race 1)에 덜 감염되었다. .


덮개작물 덮개 체계의 풀 관리에 대한 기계론적 접근Wells, M.S. 2013. (Doctoral dissertation). Retrieved from http://www.lib.ncsu.edu/ resolver/1840.16/9082

이 연구의 여러 발견 가운데 하나는 옥수수와 대두의 생산에서 1200평당 약 4082kg의 바이오매스가 나오는 굴린 호밀이 풀을 훌륭하게 통제한다는 것이다. 






결과 요약


덮개작물의 바이오매스: 검정비닐 덮개와 관련하여 초기에 종결시키면, 이 실험밭에서는 굴리고 베어낸 실험밭과 비교하여 더 적은 덮개작물의 바이오매스가 나온다. 호밀과 호밀/털갈퀴덩굴 덮개작물은 털갈퀴덩굴 덮개작물의 바이오매스보다 약 2배가 많다. 


덮개작물의 양분 투입: 호밀/털갈퀴덩굴은 양분 투입이란 측면에서 뛰어난 덮개작물이었다. 1200평당 가장 많은 양의 질소를 제공하며, 1200평당 탄소의 양도 최고치에 매우 근접한다. 한편 종결 방법은 토양에 투입되는 질소에 큰 영향을 미치지 않으며, 탄소 투입은 굴리고 베어낸 처리법에서 더 높았다. 


토양 수분: 검정비닐 처리법이 일반적으로 유기농 덮개 처리법보다 수분이 더 적었다. 


토양 온도: 검정비닐 처리법에서 최대 토양 온도는 6월에는 굴리고 베어낸 처리법보다 평균 3.2도씨, 7월에는 2.2도씨, 9월에는 1.1도씨, 10월에는 0.3도씨 더 높았다. 2012년 최소 토양 온도는 검정비닐 처리법에서 6월과 7월에 약 1.1도씨 더 높았다. 덮개작물의 유형에 따른 토양 온도의 차이는 없었다.  

토양의 양분 함량: 굴린 호밀/털갈퀴덩굴 처리법에서 토양의 탄소 백분율이 조금 증가했다. 모든 처리법에서 토양의 탄소와 질소의 백분율에는 큰 변화가 없었다. 


풀 억제: 3년 동안 모든 처리법에서 풀의 바이오매스에 변동이 있었지만, 검정비닐 체계는 굴리고 베어낸 것보다 더 일관적이었다. 검정비닐이 2011년과 2012년에 더 효과적으로 풀을 억제했는데, 2010년에는 굴리고 베어낸 체계가 검정비닐보다 뛰어났다. 굴리기는 일반적으로 베기보다 풀을 더 효과적으로 억제했다. 모든 해에 호밀/털갈퀴덩굴 덮개작물 체계가 털갈퀴덩굴과 호밀 체계와 비슷하거나 더 뛰어났다. 


전체 수확량과 상품 수확량: 토마토 수확량에 뿌리덮개의 유형이 미치는 영향은 해마다 달랐다. 2010년에는 덮개작물 덮개 체계가 검정비닐 체계보다 수확량이 더 높았지만, 2011년과 2012년에는 그 반대였다. 덮개작물 덮개 체계(털갈퀴덩굴, 호밀, 호밀/털갈퀴덩굴)에서는 굴리고 베어낸 호밀/털갈퀴덩굴 처리법이 가장 수확량이 많았다.


폐기물 생산: 검정비닐 덮개를 사용하면 비닐 폐기물의 양이 4배 정도 늘어났다. 덮개작물 덮개 처리법은 관개호스 때문에 1200평당 약 13kg의 비닐 폐기물이 발생했다. 검정비닐 처리법은 관개호스와 비닐 덮개 때문에 1200평당 약 55kg의 비닐 폐기물이 발생했다. 


수익성: 유기농 덮개 체계의 연간 수익성은 검정비닐 체계의 그것에 비교해 훨씬 변동이 많았다. 그러나 2010-2012년에 걸쳐 평균을 했을 때, 가장 높은 수익성은 굴린 호밀/털갈퀴덩굴과 베어낸 호밀/털갈퀴덩굴 체계에서 달성되었다. 






 

 

협력 농민의 사례 연구

 

로데일 연구소에서 실행한 실험 이외에도 펜실베니아와 뉴저지 주에 있는 4명의 농민들이 2011년과 2012년에 자신의 농장에서 덮개작물 덮개를 실험했다. 각자 로데일의 실험에서 행한 굴린 호밀/털갈퀴덩굴 체계를 그들이 풀을 억제하는 보편적 방법과 비교했다. 한 농민은 자신의 실험밭에 새롭게 설계된 휴립 롤러를 활용해 두둑을 지어 재배했다. 그들의 현장 연구에 활용된 실험 작물에는 토마토, 겨울과 여름 호박, 고추, 양배추가 포함된다.


2011년, 협력 농민들은 연구진이 덮개작물 덮개로 얼마나 풀이 억제되는지 정확하게 평가할 수 있게 그들의 굴린 덮개작물 처리밭에 풀을 매는 걸 허용하지 않았다. 2012년, 농민들은 토마토를 심고 4주 동안 수행한 풀 억제 평가한 이후에 굴린 실험밭의 풀을 맬 수 있었다. 이러한 이유로, 굴린 호밀/털갈퀴덩굴 처리법의 수확량은 2011년보다 2012년에 전반적으로 더 좋아졌다. 두 해 모두, 농민들은 자신의 관리 체계에서 일반적으로 사용하는 풀 통제법을 사용하도록 허용되었다.




사례 연구 #1: Genesis Farm의 지역사회 지원 텃밭


농장 일괄

위치: Blairstown, NJ
농민: Mike Baki
농사 경력: 22년
전체 면적: 9만 
경작 면적: 6만 평
토양 유형: 각편상석력질의 미사질 양토(Nassau-Manlius complex)

작물: 다양한 채소 생산, 과일, 건초

가축: 산란계

상품판매: 지역사회 지원 농업 회원 300명 


미국에서 초기에 지역사회 지원 농업을 시작한 농장의 하나. 농민은 왼쪽부터 Smadar English, Mike Baki, Judy Vonhandorf 씨.


Genesis Farm의 실험밭에서, Mike Baki 씨는 자신의 표준인 검정비닐 체계 바로 옆에 로데일의 굴리는 호밀/털갈퀴덩굴 체계를 실험했다. 그의 표준 체계에서는 두둑에 생분해 비닐을, 고랑에는 짚 덮개를 사용한다. 인력 제초는 필요할 때 표준 처리법으로 실행했다. 2011년 Mike 씨는 애호박, 토마토, 수박을 재배하고, 2012년에는 수박을 고추로 대체했다.  


2011년, 굴린 호밀/털갈퀴덩굴 밭은 검정비닐 밭보다 풀의 압박이 더 심했다. 이는 모든 작물의 수확량에 영향을 주었지만 정도는 달랐다. 굴린 호밀/털갈퀴덩굴의 수박과 애호박은 Mike 씨의 표준 검정비닐 처리법에 비교해 2배 정도 수확이 적었다. 그러나 토마토는 두 체계에서 비슷하여, 검정비닐 밭에서 생산된 양의 약 75%가 굴린 호밀/털갈퀴덩굴 밭에서 나왔다.  


2012년, 농민들에게 4주 뒤에 김매기를 허용했을 때에는 두 처리법에서 풀의 압박은 큰 차이가 없었다. 고추와 애호박 수확량은 굴린 호밀/털갈퀴덩굴에서 뚜렷하게 적었다. 토마토 수확량은 두 체계에서 거의 비슷했다. 굴린 호밀/털갈퀴덩굴에서 1200평당 7231kg이고, 검정비닐 처리법에서 1200평당 7468kg이었다. 


굴린 호밀/털갈퀴덩굴 처리법의 비용은 91.4m당 202.50달러로, 검정비닐 처리법의 506.80달러의 절반에도 미치지 못했다. 2012년의 토마토 수확량이 꾸준하게 계속된다면, 위의 처리법 비용은 상당한 절감으로 이어질 것이다. Mike 씨는 굴린 호밀/털갈퀴덩굴 체계를 계속 실험하며, Genesis Farm에서 실제로 활용할 수 있는 효과적인 방법을 찾길 바라고 있다. 


Genesis Farm의 실험밭: 굴린 호밀/털갈퀴덩굴 처리법이 왼쪽, 검정비닐이 오른쪽이다. 두 처리법 사이의 고랑은 Mike Baki 씨의 표준 풀 관리 체계의 일부인 짚으로 덮었다.
 

 

  



사례 연구#2: Swallow Hill Farm 


농장 일괄

위치: Cochranville, PA 

농부: Douglas와 Elizabeth Randolph 씨
농사 경력: 20년

전체 면적: 6만 평
경작 면적: 3만6000평
토양 유형: Glenelg 미사질양토
작물: 고추, 토마토, 십자화과 채소, 호박, 건초, 호밀짚, 블루베리, 식용 대황, 아스파라거스

가축: 없음 

상품판매: 농장 판매와 텃밭 센터와 식당에 도매



Douglas Randolph 씨가 농장에서 덮개작물로 호밀과 붉은토끼풀을 심고 있다. 
 



Douglas와 Elizabeth Randolph 씨가 이 연구에 참여했을 때, 덮개작물 덮기는 이미 그들의 표준적인 작부체계의 일부였다. 그들이 개발한 체계는 자주개자리 건초 이후 호밀을 조합하거나 호밀과 붉은토끼풀을 활용하고, 컬티패커(cultipacker)를 이용해 종결시킨 뒤 살아 남은 덮개작물을 죽이고자 글리포세이트를 살포했다. 


Randolphs 씨는 로데일의 굴린 호밀/털갈퀴덩굴 체계와 자신의 변형 기술을 비교했다. 호밀과 붉은토끼풀을 컬티패커로 갈아버리는 대신 굴리고, 가끔 발아 후 제초제를 살포했다. 그들은 무경운 파종기로 실험 작물인 버터호두호박을 심었다. 2011년과 2012년, 호밀과 붉은토끼풀 체계에서 호박 수확량은 27% 증가했다. Randolphs 씨에 의하면 붉은토끼풀은 펜실베니아 남부(평균 최저 기온 -23도씨에서 -17.8도씨)에서는 뿌리를 빽빽하게 내리는데, 추운 겨울에는 죽기 때문에 더 북쪽의 농민에게는 적합하지 않을 수 있다고 한다. 그럼에도 불구하고 Randolphs 씨는 적절한 기후에서 붉은토끼풀을 재배할 경우, 그것이 굴리는 덮개작물 체계에서 털갈퀴덩굴의 실용적인 대안이란 것을 입증했다. 


Douglas와 Elizabeth 씨는 두 가지 서로 다른 덮개작물의 조합이 비슷하게 풀을 억제한다는 것을 관찰했다. 컬티패커를 활용하여 덮개작물을 끝내는 그들의 예전 방식과 비교하여, 롤러크림퍼는 더 효과적으로 줄기를 구불구불하게 만들고 덮개작물이 다시 자라는 걸 방지했다. 그 결과, 롤러크림퍼를 사용했을 때 발아 후 제초제를 살포할 필요가 줄었다. 


이 연구에 참여한 이후 Randolphs 씨는 호밀이나 호밀과 붉은토끼풀 덮개작물을 종결시키기 위해 컬티패커 대신 롤러크림퍼를 활용하게 되었고, 농장에서 사용하는 제초제의 양이 40-50% 감소했다.  



Randolphs 씨 농장의 굴린 호밀과 붉은토끼풀에서 재배하는 버터호두호박
 

 




사례 연구 #3: Meadow View Farm

 

농장 일괄

위치: Bowers, PA
농부: James와 Alma Weaver 씨 및 아들들 

농사 경력: 38년
전체 면적: 9만3600평
경작 면적: 8만4000평
토양 유형: Clarksburg 미사질양토
작물: 토종 고추와 토마토, 호박, 단옥수수, 사료용 옥수수, 대두, 밀
가축: 양, 산란계

상품판매: 농장 판매대, 도매, 해마다 고추 축제


Meadow View Farm의 James Weaver 씨는 호밀/털갈퀴덩굴 덮개작물을 끝내기 위해 두둑 짓는 롤러크림퍼를 사용한다. 

 


James Weaver 씨는 똑같은 땅에서 38년 동안 농사를 지었다. 그는 지역에서 잘 알려져 있으며, 여러 가지 토종 품종만이 아니라 신품종 토마토와 자신이 육종한 유령고추를 재배한다.  


로데일에서 이 연구에 참여할지에 관하여 James 씨에게 물었을 때, 그는 약 1만8000평에 해마다 검정비닐을 덮어서 농산물을 생산하고 있었다. 그는 자신의 표준 검정비닐 관리법 옆에 로데일의 굴린 호밀/털갈퀴덩굴을 실험했다.James 씨의 표준 체계는 인력 제초와 식초의 살포(식물의 끝부분이 시들게 함) 및 가끔 억센 여러해살이 풀에 농약을 치며, 검정비닐 덮개를 사용한다. James 씨는 2011년에는 실험밭에 두 종류의 토마토를, 2012년에는 양배추를 재배했다.   


James 씨는 첫해에 활용한 굴린 호밀/털갈퀴덩굴 체계에서 두 종류의 토마토 수확량이 모두 형편없었다고 보고한다. 그는 이것이 연구의 설계에서 굴린 실험밭의 제초를 허용하지 않았기 때문이라고 생각한다. 실험 둘째 해에 4주 뒤 제초를 허용했을 때, James 씨의 토마토 수확량은 굴린 처리법에서 1200평당 7098kg을 올렸고, 검정비닐 처리법에서는 1200평당 9364kg을 올렸다. 검정비닐 실험밭이 전체 수확량에서 32% 더 나왔지만, James 씨는 굴린 호밀/털갈퀴덩굴의 토마토 품질이 열과 현상 때문에 검정비닐의 그것보다 훨씬 좋았다고 보고한다. 그 결과, 각 처리법의 실제 상품 수확량과 수익성은 매우 비슷했다.  


James 씨는 두 처리법 모두 양배추는 흉년이었다고 하는데, 검정비닐 실험밭의 수확량이 약 65% 더 높았다.


그는 로데일의 덮개작물 덮개 실험에 참여한 이후 호박밭의 검정비닐 덮개를 굴린 호밀로 대체하고 검정비닐의 총사용량을 거의 절반으로 줄였다. 그는 자신의 농사 가운데 더 많은 면적을 덮개작물 덮개 체계로 바꾸고 싶어한다. 안타깝게도 다음해를 위해 제때 덮개작물을 심을 공간이 없다. 호밀과 털갈퀴덩굴을 심어야 할 9월인데 그의 작물이 아직도 대부분 재배되고 있다. 그럼에도 불구하고 그는 그걸 적용할 방법을 찾을 수 있기를 바라고 있다. James 씨는“특히 내가 늙어갈수록 비닐을 제거하고 폐기하는 일을 하지 않아도 되는 게 좋다”고 이야기한다.






사례 연구 #4: Quiet Creek Farm

 

농장 일괄

위치: Kutztown, PA
농부: John과 Aimee Good 씨 

농사 경력: 12년
전체 면적: 9600평
경작 면적: 9600평
토양 유형: Clarksburg 미사질양토

작물: 다양한 채소 농사

가축: 없음

상품 판매: 지역사회 지원 농업의 농장 나눔, 도매



지난 8년 동안 John과 Aimee Good  씨는 로데일 연구소에서 임대한 토지에서 유기농업을 실행했다. 



John과 Aimee Good 씨의 농장은 로데일 연구소에서 임대한 땅이다. 그들은 로데일의 굴린 호밀/털갈퀴덩굴 옆에서 검정비닐 없이 경운을 하는 그들의 유기농 풀 관리법을 실험했다. 그들은 실험 작물로 버터호두호박을 선택하고, 실험 기간에는 제초를 전혀 하지 않았다. 


Weed pressure in John과 Aimee 씨의 실험밭에서 2011-2012년 풀의 압박은 다채로웠다. 첫해에 풀의 바이오매스는 굴린 호밀/털갈퀴덩굴 처리법에서 약 4배 더 많았다. 그러나 2012년 이들의 표준 노지 처리법에서는 굴린 호밀/털갈퀴덩굴보다 풀의 압박이 2배 더 심했다. 두 체계의 평균 수확량은 매우 비슷했다. 굴린 호밀/털갈퀴덩굴은 1200평당 6124kg이었던 한편, 그들의 표준 관리법에서는 1200평당 6463kg으로서 약 5% 차이가 났다. 


John 씨는 굴린 호밀/털갈퀴덩굴 체계를 실험하고 있으며 그들의 농장에 적용할 방법을 찾길 바라고 있다. 그들이 여러 종류의 채소를 재배한다는 점이 걸림돌이 되긴 한다.  다양한 작물의 시기에 맞추는 일이 복잡할 수 있으며, 씨앗의 크기가 작은 채소를 덮개작물 덮개에 곧뿌림하는 것이 어려워질 수 있다. 


그들은 채소밭 가운데 약 1200평 정도는 계속 검정비닐을 사용한다. 그러나 이 연구에 참여한 이후 John과 Aimee 씨는 그 체계에 덮개작물을 도입하기 시작했다.  그들은 현재 토양에 유기물을 더하고 비닐로 인해 유실량이 증가하며 발생하는 침식을 줄이기 위해 검정비닐 두둑 사이의 고랑에 독보리와 토끼풀을 심었다. 또한 John 씨는 이 기술 덕에 특히 땅이 축축할 때 두둑 사이에서 작업하기에 훨씬 더 편한 공간이 만들어졌다고 보고한다. 그들은 잔디깎이로 고랑의 덮개작물을 관리한다. 







유기농 무경운 체계를 시행하기





시작하기 


여기에서는 단일한 씨앗을 심지 않으며 어떻게 시작할지에 대해 몇 가지 제안을 하려고 한다. 다음의 아이디어는 새로운 체계에 적응하는 위험을 관리하면서 유기농 무경운 농민으로 성공하려는 여러분에게 도움이 될 것이다. 


독서 및 학습

여러분의 지역에서 잘 자라는 덮개작물에 관하여 최대한 많이 찾으라. 이에는 다른 유기농과 무경운 농민과 이야기를 나누고, 지역의 기술센터에서 이용할 수 있는 자료를 활용하고, 참고 안내서를 참조하는 것이 포함된다.  


지역의 씨앗 탐색

지역에 적응된 덮개작물 씨앗은 이미 여러분의 지역에 적응한 작물이라 여러분에게 유리할 것이다. 겨울에 얼어 죽을 가능성이 낮아지고, 농장에서 더 잘 자랄 수 있다. 지역의 씨앗을 찾는 데 시간이 좀 걸릴 수 있으니 일찍 시작해야 한다. 이는 양이 제한될 수 있기에 유기농 종자의 경우 특히 중요하다. 


실험밭

유기농 무경운의 가장 큰 위험은 새로운 관리 체계와 완전히 새로운 기술로 전환하는 일일 수 있다. 처음 몇 해 동안에는 학습 곡선이 매우 가파를 수 있다. 여러분의 농장에서 작은 실험 구역이나 실험밭을 설정해 시작하는 것도 좋은 생각이다.  


농장 평가

토양의 유형, 심으려는 작물, 보유하고 있는 농기구 및 자원, 새로운 작부체계를 탐구해야 할 시간을 살펴보라. 농장의 변화와 마찬가지로, 지식은 힘이며 새로운 덮개작물 관리 도구가 어떻게 운영될지 이해하는 일이 성공의 지름길이다.  



무경운 경고문


유기농 무경운은 다양한 상황에서 활용할 수 있지만, 여기에는 몇 가지 유의해야 할 사항이 있다. 


질소 정체현상

유기농 무경운은 체계의 질소 순환 방식을 변화시킨다. 분해 과정에서 식물이 일시적으로 질소에 쉽게 접근하지 못하게 된다. 이는 특히 매우 건조한 토양에서 작업할 경우 그러하다. 덮개가 곡류라면 농사철 초기에 질소 정체현상이 나타날 수 있다. 성숙한 덮개작물, 특히 곡류를 갈아엎고자 했을 때에도 질소 정체현상이 나타날 수 있다. 이러한 부작용을 최소화하기 위하여 할 수 있는 몇 가지 방법이 있다. 콩과식물을 덮개작물이나 그 일부로 섞어서 활용하거나, 목초의 덮개작물에 콩과의 환금작물을 심는 것(호밀에 대두)만으로도 유기물 형태로 질소를 보충할 수 있다. 


관개용수 활용

일부 덮개작물, 특히 호밀 같은 경우에는 많은 양의 물이 필요하다. 건조한 곳에서 농사를 짓거나 봄의 눈 녹은 물이나 빗물에 의존하는 경우, 덮개작물이 이용할 수 있는 물의 대부분을 차지하여 환금작물과 경쟁할 수 있으며뒷그루에 충분하지 않은 양의 물을 남길 수 있다. 좋은 소식은 시간이 지남에 따라 무경운 농법이 토양의 유기물 함량을 높임으로써 토양의 건강 상태를 개선하고, 그로 인해 수자원 보존에 큰 도움이 될 수 있다는 사실이다.


불충분한 바이오매스

덮개작물이 듬성듬성 자라면 유기농 무경운 체계가 제대로 작동하지 않는다. 어떤 이유에서든 덮개작물이 제대로 자리를 잡지 못하면, 농부는 덮개작물을 현실적으로 평가해야 한다. 그런 다음 계획처럼 계속하기로 결정하든지,갈아엎는 걸 선택하거나 풀을 통제하기 위해 제초제를 살포해야 한다. 


너무 일찍 굴림

흔히 하는 실수 가운데 하나는 너무 일찍 굴려서 롤러크림퍼로 빈약할 때 죽이게 되는 일이다. 성숙하기 전에 덮개작물이 성숙하기 전에 그냥 굴려 버리는 유혹에 빠지기 쉽다. 특히 나는 덮개작물을 기다리는데 이웃들이 파종준비를 마칠 때 그렇다. 완전히 죽지 않은 덮개작물은 양분과 수분을 빼앗아 환금작물과 경쟁할 수 있다. 


환금작물을 파종하는 문제

파종기가 제대로 작동하는지 확인하는 몇 가지 실험이 필요할 수 있다. 일반적인 어려움은 다음과 같다. 파종기가 덮개작물을 자르지 못한다. 파종기가 씨앗을 흙에 적당히 넣지 못하거나 깊이 조절 바퀴가 들려 있어서, 씨앗이 골에 자리를 잡기 어렵다. 


늦게 심음

덮개작물을 효과적으로 죽이기 위해 봄에 성숙할 때까지 기다려야 하기 때문에, 평소 환금작물을 파종하는 시기보다 더 늦춰야 할 수도 있다. 더 일찍 성숙하는 덮개작물 품종이나 여러분의 특정 지역에 더 잘 어울리는 품종을원할 수 있다. 당신이 북부 지역에 산다면, 봄에 파종할 날이 며칠 안 될 수도 있다. 살고 있는 지역에 따라 북부의 농민에게는 여름에 덮개작물을 재배하는 일이 더 나을 수도 있다. 당신의 농사에 필요한 구체적 특성을 고려하라. 그런 다음 이러한 특성을 나타내는 품종을 찾으라.


차가워지는 토양

덮개작물은 토양에 그늘을 드리워 봄철의 토양을 더 차갑게 만든다. 토마토, 가지, 고추 같이 더운 기온을 좋아하는 작물은 시작이 느려질 수 있다. 하지만 토양의 온도가 연중 일정하게 평탄해지기에 이점이 될 수도 있다. 한번굴리고 쭈그러뜨리면, 덮개작물은 이후 덥고 건조한 농사철에 더 시원하고 촉촉한 토양 상태를 유지하도록 돕는다. 




로데일 연구소의 굴린 털갈퀴덩굴에서 재배하는 유기농 무경운 옥수수
 

 

 


원문 

비닐을 벗기자.pdf


비닐을 벗기자.pdf
1.51MB
728x90

'농담 > 농법' 카테고리의 다른 글

논밭에 꽃을 심자  (0) 2018.02.05
아쿠아포닉스?  (0) 2018.02.05
영국의 혼농임업 사례  (0) 2018.01.11
미국의 벼농사  (0) 2017.12.25
벼와 함께 생물다양성을 높이는 인도의 혼농임업  (0) 2017.12.22

지렁이에 대한 흥미로운 연구이다.
흙속에 지렁이가 존재하면 확실히 식물의 성장이 더 나아지고, 질소의 함량도 높아진다고 한다. 식물과 벌레와의 관계는 좀 복잡한 양상인데, 식물의 총채벌레에 대한 저항성은 높아지지만 진딧물에게는 오히려 취약한 모습을 보인다고 한다. 식물이 더 잘 자라서 맛있으니까 진딧물이 더 꼬이는 걸까? 아무튼 재미나네. 요약 부분을 엉터리이지만 옮기면 다음과 같다.

http://onlinelibrary.wiley.com/…/1…/1365-2435.12969/abstract


요약

1. 지렁이 같은 땅속의 부식성 생물은 굴을 파고 똥을 싸는 활동으로 토양 양분의 가용성을 높일 수 있다. 최근 여러 연구에서 지렁이가 원인이 되는 이러한 변화가 식물의 자람새와 초식동물에 대한 저항성에 영향을 미치는지의 여부를 탐구했지만, 아직까지 이 논문들이 공식적으로 집계되지는 않았다.

2. 우린 2016년까지 발표된 논문들의 메타 분석을 수행해, 식물의 성장과 초식 곤충에 대한 저항 및 화학적 방어에 지렁이가 미치는 영향을 공식적으로 실험했다. 또한 지렁이가 식물의 성장과 저항에 미치는 효과의 크기에 대한 연구들 사이의 변화를 설명하는 생태적 요인도 탐구했다. 

3. 우린 지렁이의 존재가 식물의 성장(20%까지)과 질소 함량(11%까지)을 증가시킨다는 사실을 발견했다. 전반적으로 지렁이는 씹어 먹는 초식동물(애벌레, 민달팽이, 뿌리벌레류)에 대한 식물의 저항성에는 별 영향을 미치지 못했고, 심지어 체관부에서 먹이활동을 하는 초식동물(진딧물)에 대한 식물의 저항성은 22%나 떨어지기까지 했다. 하지만 지렁이의 존재는 식물이 세포를 먹어치워 공격(총채벌레류)을 당할 때 화학적 방어력을 31%까지 높였으며, 그 결과 총채벌레에 대한 저항력이 81% 증가했다. 지렁이가 미치는 효과의 강도는 생태적으로 여러 종이 혼합되고 지렁이의 밀도가 높을 때 더 컸다. 

4. 이러한 결과는 지렁이의 존재가 초식동물에 대한 식물의 방어에 자연적 변이를 일으키는 중요한 요인임을 시사하며, 기초연구와 응용연구 모두에서 식물-초식동물의 상호작용에 대한 연구에 토양생물의 더 나은 통합을 요구하는 바이다.


728x90

매우 흥미로운 인터뷰가 있어서 우리말로 옮겼다.

----------




건강한 토양 운동은 최근 뉴스에 실렸는데, 미국 농무부의 연구자 Rick Haney 씨는 그 주요 지지자 가운데 한 명이다. 정부기관과 농산업은 오랫동안 작물의 최대수확량이란 성배를 추구해 왔지만, Haney 씨는 그와는 좀 다른 이야기를 피력한다. 화학비료와 제초제, 살충제 및 기타 화학물질을 사용하여 역대 최고의 생산성을 추구하는 건 우리의 토양을 죽이고 농장을 위협한다는 것이다.



미국 농무부 토양학자 Rick Haney 씨.



텍사스의 미국 농무부 농업연구서비스에서 근무하는 Haney 씨는 인터넷 세미나를 열고, 농민들에게 건강한 토양을 만드는 방법을 가르치며 다닌다.  그의 이야기는 간단하다. 미국은 세계에서 가장 풍요로운 토양을 가지고 있지만, 수십 년에 걸친 농업 학대로 인해 식물에 필수적인 유기물을 만드는 박테리아와 균류를 죽이고 토양의 양분을 고갈시켰다는 것이다. “현재 우리의 사고방식은 화학비료를 주지 않으면 아무것도 자라지 않는다고 생각한다."고 건강한 토양을 검증하는 방법을 개발한 Haney 씨는 말한다. “그러나 그건 사실이 아니며, 결코 그렇지 않다.” 

Yale Environment 360와의 인터뷰에서, Haney 씨는 경운을 덜 하고, 덮개작물을 재배하며, 생물학적 통제로 해충을 억제하는 등의 자연농법을 검증한 연구방법을 설명한다. 트럼프 행정부가 미국 농무부의 예산을 21% 삭감할 것으로 결정한 이때, Haney 씨는 화학비료와 화학물질의 남용으로 이익을 보는 기업들이 지배하는 분야에서 정부 연구의 공평성이 중요하다고 강조했다. 그는 “우린 더 많은 독립적 연구가 필요하다”고 주장한다. “우리가 토양의 기능과 그 생물학에 대해 아는 건 빙산의 일각일 뿐이다.”


Yale Environment 360(이하 문): 토양을 향상시키기 위해 농민들과 일해 왔는가?

Rick Haney(이하 답): 그렇다. 우린 지난 50년 동안 유기물 수치 -토양의 건강과 비옥도 측정의 기준가 줄어들어 왔음을 밝혔다.  그건 시급한 일이다. 일부 농지에서는 1% 이하로 나타나기도 하는데, 바로 옆의 목초지에서는 유기물 수치가 5-6%에 이르기도 한다. 이건 우리가 이 체계를 얼마나 급격하게 변경시켰는지 보여준다. 우리가 토양의 유기물을 파괴하고 있으며, 이 지구상에 생명을 유지하려면 이를 되돌려야 한다.  

좋은 소식은, 기회가 주어지면 토양이 회복된다는 점이다. 토양은 매우 활기차고 탄력적이다. 우리가 고칠 수 없는 지점까지 파괴한 것 같지만 그렇지 않다. 건강한 토양 운동은 그러한 유기물 수치를 회복하여 토양을 더 건강한 상태로 만들고자 한다.

: 토양의 질이 이렇게 나빠진 건 왜인가

답: 많은 경운에 덮개작물도 없고, 집약적(화학물질 의존적) 농법으로 토양이 제대로 기능하지 못하는 것이라 생각한다. 생물학이 별로 할일이 없다. 우리가 필요로 하는 만큼 이행되지 않는다. 우린 근본적으로 토양의 기능을 파괴하고 있어서, 이 작물을 계속 재배하려면 점점 더 많은 합성비료를 주어야만 한다.  


문: 그럼 그건 마치 마약중독 같아서 해마다 더 많은 양이 필요한가?

답: 바로 그렇다. 지난 50년 동안 수확량이 많이 늘었지만, 그건 점점 더 많은 외부투입재를 사용해서이다. 그건 지속가능하지 않으며, 장기적으로는 효과가 없을 것이다.  

: 농민들은 토양이 고갈되어 화학비료가 필요하다고 한다. 

: 우리가 화학비료를 살포하여 이러한 많은 수확량을 올리고 있기에 체계가 작동하는 것처럼 보였다. 우리가 멕시코만의 죽음의 구역을 목격하면서부터, 그것이 정말 제대로 작동하고 있는 건지 의심하기 시작했다.  우리가 너무 많은 화학비료를 주는 게 아닐까? 그 답은 “그렇다”이다. 그건 마치 아이들에게 균형 잡힌 식단을 제공하는 대신 비타민만 먹이는 것과 같다. 그게 효과가 있을까?

현재 우리의 사고방식은 화학비료를 주지 않으면 아무것도 자라지 않는다는 것이다. 그러나 그건 사실이 아니다. 결코 그렇지 않다. 이들 가운데 가장 큰 문제는 계속해서 더 많은 수확량을 바란다는 점이다. 그러나 현실은 자기 무덤을 파고 있다는 것이다.  

: 왜 그런가?

: 자, 만약 우리가 가격을 보며 옥수수, 밀, 대두, 수수 등을 과잉생산한다고 하자. 왜 가격이떨어지는가? 지금 당장, 이 주변의 사람들이 옥수수를 재배하고 있어, 내가 그들 몇 명과 이야기를 나누었더니 올해는 수익이 별로 없을 거라 한다. 그들은 손해를 보고 있다. 말도 안 된다.농산물을 과잉생산하면 가격이 하락한다. 그래서 우린 무얼 하고 있는가? 

지난주에 이야기를 나눈 사람이 있는데, “건강한 토양의 원리를 적용하면 수확량이 떨어질 것이다”라고 하더라. 그래서 내가 “그래요, 그렇겠죠. 난 모든 사람들의 수확량이 떨어지길 바라요.” 했다. 수확량을 높이고, 높이고, 높여야 한다고만 생각한다. 계속 그렇게 할 수는 없다.  

문: 그럼 수확량 증가에 대한 집착이 농민의 수익을 파괴했으며, 궁극적으로 농업이 의존하는토양을 고갈시켰다는 것인가?

: 두말하면 잔소리다. 이런 농상품을 적당히 생산했다고 치자. 그럼 가격이 오를 것이고, 농민들은 실제로 이를 통해 수익을 낼 수 있다. 농민들은 매출 가운데 수익이 적다. 그래서 우리가 화학비료를 더 효율적으로 사용해 똑같은 양의 농산물을 생산할 수 있다면, 모두에게 이롭다. 화학비료를 많이 뿌릴 필요가 없는 건강한 토양을 회복시켜 자연에 맞서는 대신 그와 함께일해야 한다. 


: 농약은 어떤가. 토양의 생물학적 활성에 해가 되는가?

: 그렇다. 그건 마치 항암요법 같다. 그건 대상이 있는 게 아니라 모조리 죽인다. 우리가 살균제와 살충제를 사용하면 토양에서도 비슷한 일이 발생한다. 살충제는 해충만이 아니라 익충도 죽인다. 살균제는 유익한 미생물을 포함해 모든 균류를 죽인다. 그러나 균류는 매우 중요하다. 우린 균류를 다시 데려와야 한다. 우리가 전에 보지 못한 가장 비옥한 숲에 들어가면, 낙엽들을 걷어내면 어디에서는 균류를 볼 수 있다.

: 자연을 통제하려는 노력이 종종 역효과를 낸다.

: 우리의 접근방식은 많은 화학물질을 넣고 경운하여 그곳에서 일어나는 일을 조작하는 것이다.  자연은 언제나 결국엔 승리한다. 우리는 풀이나 곤충을 죽이기 위한 방안을 생각해 낼 수 있지만, 자연은 그 주변에서 방법을 찾아내기에 결국 무언가 다른 걸 찾아야만 한다.  요즘 글리포세이트 계통 제초제에 내성을 개발한 풀들이 나타나는 걸 보라. 

일반적인 프로그램에서는 “우리가 바라는 걸 더 효율적으로 재배하도록 돕는 많은 다양한 것을 기르자.”고 하는 대신, “모든 걸 죽이고 우리가 원하는 걸 재배하자”고 한다. 그건 매우 다른 사고방식이다. 우린 자연계와 맞서 싸우지 말고 그와 협력해야 한다.  

: 너무 많은 화학비료가 토양의 생물을 교란시키는가?

: 난 그렇다고 믿는다. 우린 그걸 본다. 그러한 농지에서 미생물의 활성은 떨어지고, 유기물은 적다. 많은 질소 투입재가 토양의 탄소를 파괴한다는 걸 밝힌 연구가 있다. 미생물은 여분의 질소를 활용하여 탄소를 뜯어내기에, 토양에 탄소를 격리시키기보단 많은 양의 이산화탄소를 방출시킨다.  그래서 과도한 질소가 실제로 더 많은 탄소를 체계 밖으로 방출시킨다는 증거가 있다. 하지만 우린 토양에 더 많은 탄소가 필요하다. 

: 파리 기후협약은 토양의 탄소를 매년 0.4%씩 증가시킬 것을 요구했다. 그러면 우린 어떻게 해야 하는가?

: 우린 열대우림을 베어내지 말고 나무를 심어야 한다는 이야기를 많이 들었다. 그건 중요하다. 그러나 우린 -전 세계에- 아무것도 놓여 있지 않은 흙이란 거대한 자원을 가지고 있다. 우리가 거기에 식물을 심으면, 그들이 대기에서 탄소를 빨아들여 토양에 넣기 시작한다. 그건자연적인 과정이다. 

우린 토양을 절대로 벌거벗겨 놓으면 안 된다. 당장 농민들은 자신의 농지를 일 년 중 대부분 벌거벗겨 놓는다. 그들이 다양한 작물만이 아니라 많은 종류의 덮개작물 등을 심는다면, 미국에서 옥수수와 밀을 재배하는 1억5000만 에이커의 토양에다 대기에서 탄소를 격리시켜 넣을 수 있다. 우린 엄청난 양의 탄소를 토양에 되돌릴 수 있을 것이다. 

: 덮개작물도 많은 양분을 토양에 되돌려준다. 예를 들어, 콩과식물은 토양에 질소를 풍부하게 만든다. 

: 그렇다. 그리고 탄소도 마찬가지다. 이는 농민들이 화학비료를 갖기 전에 하던 일이다. 내가 박사학위를 받을 때, 1910-1930년대 논문을 많이 인용했다. 그때 이미 토양의 생물학적 구성을 연구했고, 그것이 얼마나 중요한지 알고 있었다. 그 이후 합성비료가 나왔고, 우린 그 모든 것을 잊어버렸다. 그냥 무시했다. 

현재 우린 농민들이 농작물 생산에서 제외시키도록 하여 그대로 보존하면 보조금을 지불하는 체계가 있다. 수확한 뒤 덮개작물과 함께 이를 재배하여 모든 것이 얼 때까지 그걸 자라게 두어 겨울을 나도록 해야 한다. 그리고 다른 농민들이 그 땅에서 방목을 하도록 계약할 수 있는데, 그곳에 덮개작물을 심고 가축을 넣으면 예전 버팔로가 살던 대초원이었을 때처럼 중서부 지역이 재생되기 때문이다. 가축을 거기에 넣으면 실제로 토양의 건강이 증진된다. 


: 토양을 검증하는 새로운 방식을 개발하는 일을 도왔다. 왜 그게 필요한가?

: 지금까지 우린 올바른 구성요소들을 검증하지 않았다. 우린 기본적으로, 예를 들어 질소와 인산의 생물학적 기여를 무시해 왔다. 문헌의 추산에 따르면, 1그램의 흙에는 600-1000만개의 유기체가 있다. 그들 없이는 아무것도 자라지 않을 것이다. 미생물은 탄소 이후이다. 식물의 뿌리는 미생물을 끌어당기는 탄소화합물을 유출할 것이다. 그와 함께 미생물은 식물이 이용할 수 있는 형태의 질소와 인산을 제공하는 유기물을 분해한다. 그래서 식물 뿌리의 주변에 이상적인 양분 순환이 일어난다. 그걸 우리가 새로운 검증 방식으로 실험실에서 재현하려고 시도한 것이다.   

우린 토양을 건조시키고 난 뒤 그걸 다시 적시어 24시간 동안 나오는 이산화탄소(박테리아의 활동으로 생산됨)의 양을 측정한다. 그 이산화탄소의 양이 건강한 토양의 상태와 직접적으로 비례한다.아주 아주 간단하다. 

: 농민들이 자기 농지의 생물학적 기능이 저조한 걸 본다면, 당신이 말한 농법을 실천하도록 할 수 있겠는가? 

: 우리의 일은 농민들이 이러한 변화를 만들도록 자신감을 주는 것이다. 우린 “12만 평만 실험해 보라고 한다. 이걸 240만 평 전체에 하라고 권하지 않는다. 걸음마 단계를 활용한다. 그리고 그게 효과가 있으면 채택하라고 이야기한다.” 나에게 이렇게 말한 사람들이 있다. 당신 덕에 작년에 6만 달러의 비료값을 절약했다고 말이다. 그래서 난 이렇게 답했다. “아니요, 당신이 자료를 믿고 선택했기에 돈을 절약했지요.” 우린 그런 전화를 많이 받는다. 그 사람들은 충격을 받는다.  

: 결과가 빨리 나타나는가?

: 늘 그렇지는 않다. 건강한 토양 운동은 이제 막 시작되었는데, 사람들은 2-3년 안에 토양을 변형시킬 것이라 말하고 있다. 음, 기본적으로 토양을 파괴하는 데 50년 걸렸으니 그걸 회복시키는 데에는 2-3년 이상 걸릴 것이다. 그래서 우린 길게 보며 이 일을 해야 한다. 그러나 방향은 분명하다.

: 우린 어디로 가야 하는가?

: 우린 더 독립적인 연구가 필요하다. 우리가 토양의 기능과 생물학에 대해 이해하는 건 빙산의 일각일 뿐이다. 이제 시작단계이며, 토양에서 일어나는 일이 무엇인지 안다고 말하는 사람이 있다면 거짓말이거나 무언가를 판매하려는 사람일 것이다. 토양은 역동적인 살아 있는 체계이기 때문에 그 모든 상호작용을 이해하는 건 매우 복잡하다. 

: 새로운 정부는 여러 기관에서 과학연구 예산을 대폭 삭감하겠다고 했다. 이 프로그램에 영향을 줄 것이라 보는가? 

: 나의 연구 예산은 삭감, 삭감, 또 삭감되었다. 정부에게 엄청난 돈을 달라고 하는 게 아니다. 단지 우리가 제대로 일할 수 있도록 해달라. 우리가 민간기업에서 하는 모든 연구를 할 수는 없다. 기업의 자금을 지원받는 연구는 공평성을 보장할 수 없기에 정부에서 그 간극을 메워야 한다.

: 농업계는 살충제와 화학비료를 판매하는 데 큰 관심이 있다. 그들이 그 제품을 덜 사용하는 방법을 연구하는 일에 자금을 투입할 가능성은 없다. 

: 바로 그렇다. 나의 우려는, 요즘 정치가 진보적이지 않다는 것이다. 모두 즉각적 만족이다. 장기적인 정책 목표가 없다. 그건 현명하지 않다. 그건 미국 창립자들의 사고방식이 아니다. 그들은 길을 내려다보았다. 어떻게 된 것인가? 


http://e360.yale.edu/features/why-its-time-to-stop-punishing-our-soils-with-fertilizers-and-chemicals

728x90


자세한 내용은 문외한이라 잘 모르겠지만, 이 시각화 자료만으로도 무언가 엄청난 것 같다. 

제목을 통해 유추하자면, 그러니까 폐농경지에서 토양생물들의 연결망이 더욱 풍부해지고 자연복원이 진행되면서 대기중의 탄소를 격리하는 양이 많아진다는 건가?


그러면 농사에서는 토양을 교란하는 일을 적게 하면 적게 할수록, 즉 유기농법과 무경운 같은 대안적인 농법을 활용할수록 기후변화를 완화시키는 데 도움이 된다는 건가? 


자세하고 정확한 설명은, 전문가의 도움이 필요하다. 흙흙.


https://www.nature.com/articles/ncomms14349

728x90

내가 처음 토종에 관심을 가지게 된 것은 2008년이다. 나는 2002년 무렵부터 귀농에 관심이 있어 농사 경험이라도 쌓자는 생각으로 텃밭 농사를 시작했다. 당연히 농사는 유기농업뿐이라 생각했다. 그런 생각으로 농사를 짓다가 나의 눈은 자연스레 전통농업으로 향하게 되었다. 옛날에는 농약과 화학비료 같은 농자재 없이도 어떻게 농사를 지었을까 하는 점이 너무 궁금했고, 당시의 좋은 기술이 있으면 지금 되살릴 수도 있지 않을까 하는 생각에서였다. 그러다 우연한 기회에 흙살림에서 조직한 ‘전통농업위원회’의 위원으로 참여하게 되었고, 우리 위원들은 노농들의 경험을 살피고자 전국 곳곳을 다니며 그들을 취재하고 인터뷰했다. 그렇게 몇 년을 다니면서 살펴보니 옛날 농사법은 이제 거의 자취를 감추었다는 걸 알게 되었다. 심지어 노농들의 기억 속에서도 그러한 농법은 희미해진 것을 확인할 수 있었다. 거의 흔적도 없이 말만 남아 있었다. 물론 모두 사라진 것은 아니었다. 소로 쟁기질을 하는 단양의 할아버지는 여전히 예전의 방법을 활용해 두둑을 지어 농사를 짓고 있었고, 풀을 매는 방법이나 작물을 돌보는 방법 곳곳에 예전 농법들의 흔적이 남아 있긴 했다. 하지만 온전한 모습 그대로는 찾아보기 힘들었고, 너무 파편화되어 그걸 온전한 형태로 간추리는 것조차 힘들어 보였다. 그런데 딱 하나, 옛날의 것이 남아 있었다. 그것은 바로 씨앗이었다.  


‘농부는 굶어 죽어도 씨앗을 베고 죽는다’는 속담이 있다. 지금 사람들에게는 스마트폰이 그런 위치이겠지만, 농부에겐 씨앗이 매우 중요하다는 뜻이 담겨 있다. 하지만 요즘 농부들은 그러한 씨앗조차 제 손으로 받지 않는 농사를 짓고 있다. 농약방에 가면 수확량이 좋다는 씨앗들이 무수하게 널려 있으니 굳이 애써 씨앗을 받을 필요가 없기 때문이다. 그런데 우리가 만난 노농들에게는 적어도 한두 가지의 토종 씨앗이 존재했다. 그렇게 취재와 조사를 마치면 남는 것은 녹음기에 녹음된 노농의 목소리와 봉다리에 담긴 씨앗이 있었다. 그걸 가지고 돌아와 농지에 심고 가꾸며 씨앗의 숫자를 늘렸다. 그 일의 화룡점정은 농촌진흥청의 의뢰로 2008년에 있었던 “토종 유전자원 수집단”이었다. 안완식 박사를 단장으로 박문웅, 한영미, 안철환 선생과 함께 두 달 여 동안 강화도와 울릉도, 제주도 전역의 마을을 모두 돌아다니며 토종 씨앗을 수집했다. 당시 450여 점의 토종 씨앗을 수집할 수 있었고, 제주에서 수집한 토종 씨앗은 제주 여성농민회총연합에 인도하여, 현재 토종 씨앗 보전운동을 펼치는  데 밑거름이 되었다. 


토종 씨앗에 대한 관심과 열의는 ‘토종 씨드림’의 결성으로 이어졌다. 나도 그 일원으로 참여하면서 토종 씨앗에 대한 공부를 이어나갔다. 그러면서 토종은 무엇이고, 왜 중요한가에 대하여 나름대로 이해할 수 있게 되었다. 토종 씨앗이 중요한 이유를 하나 꼽으라면 나는 ‘농업생물다양성의 교두보’라고 이야기하겠다. 토종과 관련해 저지르는 실수 가운데 하나가 마치 토종 씨앗만 있으면 모든 것이 해결된다는 식의 오해이다. 토종만 있으면 농약과 비료가 없어도 유기농업이 가능하고, 토종 씨앗이 신품종보다 훨씬 우수하고 뛰어나며, 토종을 먹으면 없는 병도 고칠 수 있다는 식의 접근은 위험하다. 그것은 일종의 종교와도 같은 모습을 보여준다. ‘토종교’는 위태롭다. 믿음의 영역으로 빠지지 않기 위해서는 토종에 대해서 알아야 한다. 왜 우리의 농업에서 토종이 사라지게 되었고, 토종에는 어떤 특성이 있으며, 이러한 토종을 왜, 어떻게 보전해 나아가야 할 것인지에 대해 고민해야 한다. 고민 없는 맹목적인 믿음은 그것이 어떠한 형태이든 위험하다. 거기에 빠지면 자신만 옳고 다른 건 그르다는 태도를 취하기 쉽다. 그러한 태도는 상대를 죽여 없애려 하기 십상이다. 지금까지 그러한 태도로 인해 수많은 토종이 사라지지 않았는가. 우리는 또 다른 희생양을 찾는 일을 멈추고 서로 공존할 수 있는 방안을 모색해야 한다. 토종 씨앗이 지닌 함의도 ‘다양성의 공존’에 있다. 


농사는 여러 요소들이 복합적으로 상호작용하면서 이루어진다. 요즘 식물공장이니 수경재배시설이니 하는 기술들이 개발되면서 마치 사람이 모든 것을 인위적으로 통제해서 생산할 수 있다는 착각에 빠지곤 한다. 물론 그렇게 하여 작물을 재배하면 그 기술을 옹호하는 사람들의 주장처럼 외부의 오염원으로부터 안전하고, 여러 요소들을 통제하여 안정적으로 농산물을 수확할 수 있겠다. 그러나 거기에는 ‘관계들의 상호작용’이 빠져 있다. 그저 양분만 주입하고, 햇빛을 쪼이든 LED 광원으로 그를 대신하든지 하여 겉모습만 농산물을 생산할 뿐이다. 농사는 일종의 교향곡이다. 햇빛과 바람과 물을 바탕으로 하여 작물을 중심으로 흙과 그속의 다양한 미생물과 지렁이, 땅강아지, 두더지 같은 생물들이 얽히고설키며 연주를 한다. 농부는 그 교향곡의 지휘자이다. 목표를 설정하고 방향을 지시하며 서로의 관계를 조율하는 데 도움을 줄 뿐 그들의 역할을 대신할 수 없다. 한두 명의 결원은 보충할 수 있겠지만, 전체를 다 담당할 수는 없는 노릇이다. 유기농업도 이와 같은 맥락이다. 유기농업의 ‘유기(有機)’라는 단어는 생물체처럼 전체를 구성하고 있는 각 부분이 서로 밀접하게 관련을 가지고 있음이란 뜻이다. 즉, 농업생태계를 구성하고 있는 각각의 요소들이 서로 밀접하게 연관되어 작물에 이로운 상호작용을 하도록 농사짓는 것이 바로 유기농업인 것이다. 그런데 요즘은 유기농업이 그저 농약과 화학비료 같은 화학 농자재만 쓰지 않으면 되는 것인 양 호도되고 있다. 그래서 심지어 유기농가에서도 비료만 쓰지 않을 뿐 과다한 퇴비를 사용하여 땅을 망가뜨리는 일이 비일비재하다. 유기농업에 대해 정확히 이해하지 않고 화학 농자재만 쓰지 않으면 된다는 식으로 받아들이며 발생하는 안타까운 일이다. 


유기농업에서는 참가자가 많으면 많을수록 좋다. 물론 작물에 해를 끼치는 요소는 달가운 존재들이 아니다. 당장 유기농업을 실천하여 농약을 치지 않으면 병충해가 늘어난다고 한다. 당연한 일이다. 깨어진 균형을 다시 이루기까지에는 많은 시간과 노력이 필요하다. 그 과정이 매우 어려워 중도에 포기하는 일이 많다. 공부도 많이 해야 하고, 세심하게 관찰해야 한다. 그러니 일반적인 농사에 비해 할 일도 많고 어렵게 느껴지는 것이 사실이다. 농업생태계에 참여한 여러 요소들이 다양해지려면 논밭의 주연인 작물도 다양해져야 한다. 수만 평의 논밭에 똑같은 품종의 한 가지 작물만 재배되는 모습에 어떤 사람은 장관이라 여기며 카메라 셔터를 누르겠지만, 어찌 보면 끔찍한 일이기도 하다. 경관이 획일화된 논밭에는 병충해가 찾아오기도 쉽고, 그 작물이 요구하는 양분도 모두 같기에 땅이 혹사를 당하기도 쉽고, 그에 찾아오는 미생물이나 곤충도 다양하지 않을 수 있다. 말 그대로 획일성이 지배하는 경직된 사회의 모습을 그대로 보여준다. 우리가 흔히 저지르는 말 실수 가운데 ‘틀리다’는 표현이 있다. 요즘 사람들이 구사하는 언어를 보면 ‘다른 것’을 ‘틀린 것’이라 표현하는 걸 쉽게 볼 수 있다. 왜 다른 게 틀린 것이 되었을까 하는 건 나의 오래된 의문이었다. 나는 나름대로 우리 사회가 다른 것을 용납하지 않았기 때문에 그렇게 된 것이라 결론을 내렸다. 과거 모두가 하나 되어 경제발전을 이룩하자며 온 국민의 군인화가 이루어지고 일반 사회는 군대의 연장선이 되었다. 다른 의견을 내는 사람, 다양성을 강조하는 사람은 빨갱이로 몰려 처벌을 받거나 죽임을 당했다. 그러한 사회 분위기가 몇 십 년 동안 이어졌으니 우리가 다른 것을 틀린 것이라 받아들이기에 충분하지 않을까. 다른 것은 틀린 것이 아니다. 다른 것은 그저 다른 것일 뿐이다. 다른 것을 틀리다고 하면서 우리는 수많은 다양성들을 무시하고 짓밟아 왔다. 성소수자, 병역거부자, 장애인, 여성주의자 등등 이 사회의 기준에 조금이라도 어긋나는 사람들의 인권은 무시되고 짓밟혔다. 그 모습이 우리의 논밭에서도 똑같이 일어난 것이다. 수확량(경제성장)이 떨어지는 토종 씨앗(다양성)은 빨갱이로 내몰리며 논밭에서 사라지게 되었다. 물론 그것이 농민들이 자발적으로 선택한 것이 아니냐고 항변할 수도 있겠다. 그런데 농민들 역시 사회적 존재가 아닌가? 사회에서 요구하고 필요로 하는 것을 받아들였을 뿐이다. 심지어 신품종 통일벼를 보급하는 초창기에는 통일벼 이외의 다른 품종의 토종 벼로 못자리를 만들면 관련기관의 관리들이 나와 못자리를 밟아 망쳐 버리는 일도 흔했다고 한다. 


나는 이 책에서 토종이 최고라는 이야기를 하려는 것이 아니다. 그렇다고 최선이라고도 이야기하지 않을 것이다. 토종은 토종 나름대로 의미와 가치가 있음을 이야기하고자 한다. 선택은 각자의 몫이다. 토종 씨앗이란 무엇이고, 그것이 어떤 의미와 가치가 있으며, 어떠한 토종들이 있는지 이야기하겠다. 이를 통해 조금이라도 토종 씨앗에 대한 이해가 넓어져 토종 씨앗이 농업생태계에 비집고 한 자리에 뿌리를 내릴 수 있으면 좋겠다. 그러한 일이 농업은 물론, 우리 사회에 다양성이 확산되는 데 도움이 되었으면 한다.


자, 그럼 이제 본격적으로 토종 씨앗 이야기로 넘어가도록 하자.



후기... 책이 출간되었습니다. 한번 구매해서 읽어보시겠습니까? 

종이책 http://www.yes24.com/24/Goods/41226260?Acode=101

전자책 http://www.yes24.com/24/Goods/58207791?Acode=101

728x90

'농담 > 씨앗-작물' 카테고리의 다른 글

씨앗들의 여행  (0) 2016.09.05
토종, 도대체 토종이 무엇인가  (0) 2016.09.05
유전자변형 작물의 폐해가 나타나고 있다  (0) 2016.08.23
GMO 표시제 논란  (0) 2016.07.07
토종 마늘의 변신  (0) 2016.06.24

+ Recent posts