728x90



컨자kernza의 뿌리가 토양을 개선하는 모습을 봅니다. 


인간이 잡초라 부르는 풀들도 이런 일을 한다고 합니다. 농경지에서 풀을 어느 선까지 배제시키고, 어느 선까지 허용할지가 중요하겠습니다.

728x90
728x90

제초 로봇 기술이 여기까지 왔다. 

언젠가 상용화가 되겠구나 싶네. 



728x90

'농담 > 농법' 카테고리의 다른 글

토양을 건강하게 유지하는 길  (0) 2019.07.25
천적을 위한 공간  (0) 2019.07.23
유기농 퇴비 제조   (0) 2019.07.12
친환경 블루베리 농사  (0) 2019.06.26
대전, 둠벙의 메기를 활용해 벼농사를 짓다.   (0) 2019.06.18
728x90

유라시아 농경사 권1



제3장 

자연과학에서 본 벼의 기원    이시카와 류지石川隆二



벼의 기원과 분류


일본에 퍼진 벼


일본인인 우리들이 일반적으로 먹고 있는 쌀은 벼, 학명으로는 오리자 사티바Oryza sativa를 재배하여 수확한 것이다. 세계에서 남극 대륙을 제외한 모든 대륙에서, 즉 고위도 지대부터 적도 바로 아래까지 널리 재배되고 있다. 그러나 이들 재배 벼는 처음부터 이처럼 전 세계에서 재배되던 게 아니다. 예를 들면, 일본에서는 홋카이도에서 불과 120년 전에야 간신히 늘 재배할 수 있게 되었다고 기록되어 있다. 아오모리현의 이나카다테田舍館 유적에서는 2000년 전의 논터가 발굴되어, 일본 벼농사 역사의 매우 초기에 본국 최북단에 논벼농사를 가지고 들어왔다는 걸 알고 있다. 지금도 논의 아래를 파서 야요이, 고대, 중세와 단속적이자만 논터를 발굴하고 있다(그림 3-1). 곧, 벼는 1900년 정도에 걸쳐서 쓰가루津軽 지방에 발을 들여놓고 있었던 것이다. 초기에 아오모리현으로 건너와 있던 벼는 열대 지방에서 볼 수 있는 성질의 것이었던 흔적이 식물 유체에서 발견되었다. 지금의 도호쿠 재래종에 그와 같은 성질이 없기 때문에, 서일본에서 여러 번 벼를 가지고 들어온 뒤에야 간신히 홋카이도에서도 재배할 수 있는 벼가 발견되었을 것이다. 



그림3-1 아오모리현 마에가와前川 유적의 논터. 야요이, 고대, 중세의 복합 유적이며, 중세의 논터에는 사람의 발자국이 남아 있다.



일본에서 논벼농사를 가지고 들어온 연대는 아직도 논쟁거리이지만, 일반적으로 지금으로부터 2900년에서 2500년 전이라 한다. 벼가 북진하는 데에는 꽤 시간이 걸렸을 것이다. 그중에서 홋카이도에 가지고 들어와 정착할 수 있었던 벼 품종은 꽃이 피는 시기에 까락이 붉어져서 '아카게(赤毛)'라고 불렀다. '아카게'는 자연 돌연변이가 자주 발생하여, 다양한 형질을 가진 계통을 만들어낸다고 알려져 있다. 재배에 도움이 되는 돌연변이로는 알곡의 끝에 있는 돌기인 까락이 사라진 '방주妨主'가 유명하다. 이 경우는 두 가지 유전자를 잃어서 '털'이 없는 벼가 되었다(그림3-2) 이와 같은 특수한 벼도 포함해 일본 재래종의 대부분은 일본형(자포니카)라는 품종군으로 분류된다.



그림3-2 벼의 북진에 도움이 된 재래종 '아카게'(좌)와 '방주'(우)



 

두 가지 품종군


재배 벼 전체를 보았을 때, 일본형과 대치되는 것이 인도형(인디카)이다. 이들 집단은 다양한 성질에서 다른 것이 알려져 있다. '왕겨털(稃毛)'이라는 알곡의 끝에 생기는 털의 길이를 비교했을 때 인도형은 짧은 부모를 가지는 특징이 있다(그림3-3). 일본형에서는 북상할 만큼 왕겨털이 길어지는 경향도 볼 수 있다.



그림3-3 알곡의 표면에 생기는 왕겨털. 북으로 가는 만큼 길어진다. 왼쪽은 일본형 품종, 오른쪽은 인도형 품종.




또한 화학약품인 페놀 용액(1.5%)에 알곡을 3시간 정도 담그어 보면, 품종에 따라 알곡과 용액이 검게 변색하는 것이 있다(그림3-4). 이 반응을 '페놀 반응'이라 하며, 어떠한 반응을 나타내는지는 Ph라고 이름을 붙인 유전자가 제어한다고 알려져 있다. 검어지는 경우는 우성 유전자가 작용하고, 인도형 품종에 많이 보인다. 착색하지 않는 경우가 일본형이다. 다만 반드시 모든 일본형이 착색하지 않는 건 아니다. 오카 히코이치岡彦一 박사(1916-1996)는 페놀 반응에 더하여 왕겨털 길이와 다음에 기술하는 새싹의 염소산칼륨 감수성 정도라는 세 가지 형질을 조합하여 품종군을 식별하는 방법을 찾아냈다(Oka 1988). 



그림3-4 알곡의 페놀 반응. 왼쪽의 알곡을 페놀액에 담그면 +형의 대립 유전자를 가지고 있는 품종은 검어진다(오른쪽 위).



염소산칼륨 용액은 강한 독성을 나타내는 산화제이다. 벼의 새싹을 염소산칼륨 용액을 써서 기르면 곧 죽어 버리지만, 일본형 품종은 죽기까지 시간이 길고 '감수성이 약한' 경향을 나타낸다. 피해도(감수성)이 높은 쪽이 인도형인 경향이 강하다(그림3-5).



그림3-5 새싹의 염소산칼륨 반응. 일본형(좌)은 감수성이 약하기에 인도형(우)보다 죽기까지 시간이 걸린다.



이외의 형질에 대해서도 인도형과 일본형 두 가지 품종군으로 나뉘는 경향을 볼 수 있다. 재배 벼에서 왜 그러한 경향이 나타나는 것일까? 지금까지 행한 연구에서는 (1)하나의 모집단에서 재배되는 과정에서 두 가지 다른 집단으로 나뉘었다, (2)같은 야생종 집단 안에서 다른 형질을 가지고 있던 계통에서 각각 인도형과 일본형 품종이 재배화되었다는 서로 다른 두 가지 설을 생각하고 있다. 


벼농사 유적의 현상을 보는 한, 동아시아(현재의 장강 유역)에서 재배화된 일본형이 그 뒤 남하한 민족에 의하여 동남아시아로 전파되어 현지의 야생종과 만나면서 인도형의 재배화에 관여한 것이 추측된다. 이와 같은 사건은 다양한 유전자의 계보를 추적하여 밝힐 수 있다. 


인도형과 일본형 품종의 차이를 밝히는 일은 재배 벼의 기원을 해명하는 데에도 도움이 될 것이다. 야생 벼에서는 앞에서 서술했듯이 형질의 변이가 명료하지 않고, 동질효소라는 단백질을 만들어내는 유전자의 변이에서나 겨우 인도형과 일본형 품종에서 보이듯이 유전적으로 달랐던 계통임이 보고되었다(Morishima and Gadrinab 1987). 이 점에 대해서는 나중에 상세히 기술하겠다.



야생 벼의 생식 영역


재배 벼와 비교해 야생 벼는 어디가 다른 것일까? 벼는 오리자속이라 불리는 식물종의 집합(분류)에 속한다. 오리자속을 구성하는 식물종은 세계에 분포한다. 그 가운데 아시아의 재배 벼는 사티바라고 불리는 종에 속하고, 세계의 재배 벼 대부분을 점하고 있다. 사티바종에 근연한 루퓌포곤종rufipogon이라 불리는 야생 벼(이하 루퓌포곤)는 열대 도서부(인도네시아), 오세아니아부터 동남아시아, 남아시아, 동아시아에 분포한다.


식물종의 분류는 새로운 유전정보가 더해져 변경된다. 오세아니아에 생식하는 메리디오나리스meridionalis, 아메리카에 생식하는 글루매파투라glumaepatula, 아프리카에 생식하는 바르시barthii 및 롱기스타미나longistaminata는 일찍이 페렌니스perennis라는 종 안의 오세아니아형, 아메리카형, 아프리카형으로 분류되고 있었다.


루퓌포곤은 꽤 높은 임성稔性(꽃가루가 기능하는 것)을 나타내 자손을 만든다고 널리 알려져 있었는데, 사티바와 같은 유전자를 공유하고 있음이 밝혀져 재배종의 직접 선조가 되는 야생종으로 자리매김을 하게 되었다. 이들의 상세한 내용도 Oka(1988)에 정리되어 있다.


야생종의 분류는 어렵고, 분류체계 그것이 연구자마다 다른 경우도 있다. 드물게는 많은 연구자의 의견이 일치하여 지금까지 이어진 종명이 변경되기도 한다. 루퓌포곤의 분류에서도 마찬가지 사례가 있었다.


아시아형의 루퓌포곤에는 두 종류의 생태형이 알려져 있다. 한해살이와 여러해살이이다. 한해살이는 종자를 남기고 자신은 죽는다. 여러해살이는 종자도 남기지만, 자신에게 그 에너지를 축적해 놓으며 영양번식을 할 수 있는 생활사 특성을 가지고 있다.


한해살이는 니바라nivara라는 종으로, 여러해살이 야생 벼인 루퓌포곤과 식별되기도 한다. 한해살이 야생 벼는 우기에 개화하고, 종자를 맺는다(그림3-6). 재배 벼라면 하나의 이삭에서 개화하는 '꽃'(벼에서는 이삭꽃이란)은 1주일 이내에 피고 지며, 모든 이삭꽃은 거의 같은 시기에 등숙한다. 이것을 '생육의 균일화'라 하며, 재배에 필요해지는 현상의 하나이다. 한편, 야생 벼에서는 하나의 이삭 안에 최후의 이삭꽃이 개화할 무렵에는 끝쪽의 종자가 완숙해서 탈립해 버린다(그림3-7). 익은 이삭꽃이 이삭에서 지면으로 떨어지고 후세를 남길 준비를 하는 것이다. 건기에는 식물 개체 그것은 죽어 버리지만, 지상에 떨어진 종자는 휴면성을 보이기 때문에 다음 우기가 되기까지 발아하지 않고 '동면' 상태로 살아 남는다.



그림3-6 라오스에서 발견한 한해살이 야생 벼(가운데). 건기에는 종자를 남기고, 자신은 죽는다.




그림3-7 야생 벼의 탈립성과 생육의 불균일화. 야생 벼의 알곡은 익은 무렵에 탈립하기 때문에, 조사하면서 공책에 올리기만 해도 탈립하기도 한다. 캄보디아에서.



  

한해살이와 비교해 여러해살이는 종자를 만들지만 그 생산성이 한해살이에 비해 떨어진다. 그 대신 남은 종자 생산 에너지를 자신이 살아 남기 위해 이용한다. 벼 개체는 한해살이의 재배종이라도 '움돋이'를 뻗어 온갖 마디에서 싹과 뿌리를 뻗는 능력을 가지고 있다. 일부가 죽어도 똑같은 유전자형을 지닌 조직이 살아 남는다. 이와 같은 번식 방법을 영양번식이라고도 한다. 똑같은 번식 방법을 딸기와 감자에서도 볼 수 있다. 여러해살이 벼는 몇 해에 걸쳐 식물 그것이 살아 남기 때문에 건기에도 물을 얻을 수 있는 연못의 중심부 등에 적응한다. 당연히 우기에는 연못의 수량이 늘어난다. 이 자극으로, 예를 들면 뜬벼는 짚(줄기)의 마디 사이를 늘린다. 그 결과 수면 위로 잎을 내밀고, 우기에 늘어난 수량에 견딜 수 있다(그림3-8).



그림3-8 캄보디아 씨엠립 교외의 반데이 스레이에서 학생이 손에 들고 있는 건 여러해살이 야생 벼. 마디에서 새로운 싹이 나오고 있는 것을 알 수 있다. 뒷쪽의 연못은 수심 1미터 이상.



발굴 자료와 문서에 의하면, 재배종의 선조종인 루퓌포곤은 장강 유역보다 약간 고위도 지대에서도 생식하고 있었던 듯하다. 그러나 현재 루퓌포곤의 생식 영역은 중국에서는 하이난섬, 광시 치완족 자치구성, 광둥성, 후이난성, 장시성, 윈난성 등으로 한정된다. 개발과 몇 천 년 단위의 기후변화에 의한 것이라 생각한다. 동남아시아에서는 지금도 대부분의 나라에서 루퓌포곤을 발견할 수 있다. 그러나 중국과 마찬가지로 개발이 진행된 태국에서는 생식 영역이 꽤나 감소했다. 한편, 일본에서 야생 벼가 생식하고 있었단 기록은 없으며 재배 벼만 대륙과 남쪽에서 섬으로 옮겨져 전파하는 등 여러 경로로 전해져 왔던 것 같다.


루퓌포곤의 남방한계는 남반구의 오세아니아이다. 오스트레일리아 북부에는 여러해살이 루퓌포곤과 한해살이 메리디오나리스가 생식하며, 지금까지 여러 계통이 수확되어 연구에 이용되어 왔다(그림3-9). 오스트레일리아 퀸즈랜드 주립 하버리움(식물표본관)에서는 그들의 표본을 보관하며 일반에 공개하고 있는데 분류하면서 기술적인 문제로 메리디오나리스를 루퓌포곤이라 잘못 표기해 놓기도 했다. 형태학적으로는 이삭꽃 꽃밥(수술의 꽃가루를 가지고 있는 부분)의 길이가 2mm 이하라면 메리디오나리스, 4mm 이상이라면 루퓌포곤이라 규정하고 있는데, 게놈 수준에서도 기준을 정해 놓을 필요가 있을 것이다.



그림3-9 오스트레일리아의 여러해살이 야생 벼. 유칼립투스가 살고 있는 연못에서 생식하고 있다.




재배 벼와 야생 벼를 구별하다


여러해살이 야생 벼에서 발견되는 '뜬벼' 성질은 아시아 갠지스강, 이라와디강, 챠오프라야강, 메콩강 등의 큰 강 삼각주 지대의 재배 벼에서도 볼 수 있다. 이들 삼각주 지대는 홍수가 자주 일어나는 곳이라 그러한 지역에 대응한 뜬벼 재배가 행해진다. 그럼 재배종에는 없고, 야생 벼에서만 볼 수 있는 형질은 무엇일까?


재배종과 야생종에서 서로 다른 형질의 하나로 종자의 크기를 들 수 있다. 일반적으로 야생종은 재배식물에 비하여 수확 대상이 되는 종자와 식용부가 작은 경향이 있다. 이것은 사람이 재배, 수확하면서 서서히 큰 것을 선발하여 재배식물이 되었기 때문이라고 생각한다. 야생 사과와 재배 사과에서는 10배 정도 크기에서 차이가 나는 걸 볼 수 있다.


야생 벼의 종자도 재배 벼에 비하여 작은 경향이 있는데, 예를 들어 루퓌포곤과 사티바를 비교하면 사과처럼 극단적인 차이는 보이지 않는다(그림3-10). 중국의 강소성 농업과학원의 탕릉화湯陵華 교수는 이 이유를 야생 벼도 재배 벼와 공존하여 종자가 대형화되는 유전자를 받아들였기 때문이 아닐까 생각한다. 그러면 실제로 재배 과정에서 벼의 종자는 어떠한 변화를 나타내 왔을까? 지금도 그것을 조사하는 방법이 있는 것일까?



그림3-10 야생종과 재배종 알곡의 크기. 왼쪽부터 루퓌포곤, 재배 벼인 인도형, 재배 벼인 열대 일본형. 야생 벼의 크기는 극단적으로 작지 않다.



중국의 유적에서는 연속적인 퇴적층에서 방대한 양의 볍씨를 얻을 수 있다(그림3-11, 3-12). 그와 같은 유물과 현재의 재래 야생종의 종자에 기초하여 탕 교수는 대략 7000년 전부터 현재에 이르는 종자의 크기 변천을 조사했다. 그 결과, 볍씨는 재배화 과정을 거치며 세로 4mm, 가로 2mm 정도 대형화되었다는 것을 알게 되었다. 또한 세로의 크기만 비교하면, 중국 재래 야생 벼는 700년 전에 이용되었던 '고대의 벼'보다 오히려 현대의 재배 품종에 가깝다는 것이 밝혀졌다. 7000년 전의 유물 중에는 야생 벼와 재배 벼가 혼재해 있다고도 생각할 수 있겠지만, 재배화와 평행하게 야생 벼의 종자가 대형화하며 살아 남았다고 생각할 수 있다. 



그림3-11 강소성 고우高郵, 용교장龍蛟莊 유적에서 출토된 7000년 전의 탄화미. 탕릉화 교수 제공.



그림3-12 강소성 고우, 용교장 유적에서 출토된 5000년 전의 탄화미. 현재의 야생 벼보다도 작다. 탕릉화 교수 제공.




종자의 색과 재배화


종자의 색은 어떨까? 볍씨의 색은 바깥의 세포층(자세히 말하면, '열매껍질'이라고 부르는 표면의 세포층과 그 안쪽에 있는 배젖을 보호하고 있는 '씨껍질'이라고 부르는 세포층)에 착색이 있는 유형과 착색이 없는 유형으로 크게 나눌 수 있다. 야생 벼의 종자는 모두 붉은색인데, 재배종에서는 붉은색과 흰색 두 가지이다. 이 형질의 차이는 착색에 관한 우성 Rc 유전자에 의하여 지배된다. Rc 유전자가 Rd 유전자와 상호작용하면, 종자 표면에 균일한 착색을 가져와 한결같은 붉은색 겉모습을 나타낸다. 또 Rc 유전자는 단독으로도 작동한다. 현미가 부분적으로 붉은 반점을 나타내는 경우가 이에 해당된다(그림3-13).



그림3-13 현미에서 보이는 쌀알 색의 변이. 왼쪽부터 RcRd형의 붉은쌀인 대당미大唐米(가고시마 토종) 및 아오모리현의 토종 적제赤諸. RcRd형의 붉은 반점 및 Rc형의 흰쌀(일본청日本晴)



흰쌀은 이들 착색층에 색소가 없어져서 생긴다. 요즘 연구에서 착색의 원인인 Rc 유전자 자체의 분자구조를 해명해(Sweeney 외 2006, Furukawa 외 2007) 흰쌀은 Rc 유전자가 기능을 상실한 열성의 Rc 유전자로 변화한 것이며, 그 분자구조를 붉은쌀 계통의 그것과 비교하면 Rc 유전자 내부의 염기배열의 일부가 결실欠失되어 흰쌀이 된다는 것을 밝혔다. 게다가 인도형, 일본형의 품종을 막론하고 흰쌀은 똑같이 결실을 가지고 있었다. 야생 벼는 모두 붉은쌀만 있기 때문에, 재배 과정에서 흰쌀의 재배가 일원적으로 일어났다고 할 수 있다.


이 붉은쌀의 성질을 지배하는 유전자의 내부 배열을 바탕으로 재배종 가운데 붉은쌀을 비교한 바, 두 종류의 집단(A 및 B)으로 나뉘었다(그림3-14). A집단은 인도형의 붉은쌀과 모든 흰쌀로 구성되어 있다. B집단에는 일본, 한국 및 중국의 붉은쌀 품종이 포함된다. 일본에서 볼 수 있는 붉은쌀에는 A집단도 있지만, 그들은 중세에 중국에서 일본으로 전파된 인도형 품종(대당미)이다.



그림3-14 Rc 유전자 내부의 SSR 다형. A집단은 흰쌀 및 인도형의 붉은쌀, B집단은 일본형의 붉은쌀이 나타내는 유전자형이다.  



대당미는 애초 점성도占城稻라고 하여 11세기에 점성국占城國에서 복건성 등을 중심으로 중국에 가지고 들어온 벼와 계보를 같이한다. 문헌에 의하면 송나라의 진종眞宗 대중상부大中祥符 5년(1012년)에 작물의 다양화를 위하여 가뭄 저항성이 있는 조생종으로 황무지에 도입되었던 것 같다. 이것이 중국의 메벼 계통이 되었다(寶月 1993). 이와 관련하여 점성국은 힌두교를 믿으며 지금의 베트남 중부를 중심으로 번영했던 고대국가인데, 갠지스강 유역과 관련이 있다고 이야기된다. 


중세에 일본에 가지고 들어온 대당미의 대부분은 붉은쌀로서, 밭벼로도 논벼로도 심어서 재배할 수 있는 특수한 형질을 가지고 있었다. 이들의 유전적 형질은 인도형과 일본형의 교잡을 보이고 있다(Ishikawa 외 2002). 대당미는 동아시아 독자의 품종이라고 할 수 있을 것이다. 


이상으로부터, 

(1) 야생 벼는 원래 모두 붉은쌀이며, 재배 과정에서 흰쌀이 되는 돌연변이가 한 계열만 발생했다.

(2) 재배 벼에는 흰쌀과 두 종류의 붉은쌀이 포함되어 있었다.

(3) 흰쌀과 A집단의 붉은쌀만 중국과 동남아시아를 남하하여, 인도형이 성립하는 데에 관여하여 흰쌀 유전자를 후세의 벼에 건네주었다. 

(4) A집단의 인도형 붉은쌀인 점성도가 중국에 도입되어, 이윽고 일본에도 대당미로 건너왔다.

라고 할 수 있다. B집단에 속하는 일본형 붉은쌀과 인도형 붉은쌀이 같은 붉은쌀 유전자에서 파생되었는지 어떤지에 대해서는 현시점에서는 알 수 없다. 유전자 전체에 걸친 염기배열에 따른 부분상동성을 밝히는 것으로 논할 수 있게 될 것이다. 


앞으로 중국의 야생 벼에만 A 및 B 집단의 붉은쌀이 존재한다는 것을 밝힐 수 있다면 붉은쌀의 성립이 다원적이었다는 점, 중국을 기존으로 두 방향으로 벼가 전파되었다는 점을 증명할 수 있을 것이다.





유전자가 말하는 벼의 기원


인도형과 일본형은 같은 기원에서 성립한 것인가?


유전자를 구성하는 염기배열은 일정 비율로 돌연변이를 발생시켜, 유전암호로 정보를 담당하는 네 종류의 염기(아데닌, 시토신, 구아닌, 티민)가 자리를 옮겨 다닌다. 선조가 똑같은 두 가지 자손에서 같은 유전자의 염기배열을 비교하여 인도형과 일본형 품종이 40만 년 전에 분화했다고 산출한 연구자가 있다(Zhu and Ge 2005). 유적 등에서 추정되듯이 벼의 재배가 시작된 것이 빨라도 지금으로부터 1만 년 전으로, 40만 년 전에 재배 품종이 유전적으로 분화되어 있었다고 하는 자료를 어떻게 해석하면 좋을까? 또한 게놈 안의 네 가지 유전자만으로 얻은 자료이기 때문에 이론을 주장하는 사람도 있을 것이다. 다만 앞에서 기술했듯이 다양한 형질로 식별되는 인도형과 일본형은 유전적으로도 고도로 분화되어 있기 때문에, 그 특수한 영역의 염기배열로부터 산출된 분기 연대라고 한다면 타당한 분기 연대라고 생각한다. 이와 같은 예는 DNA의 분화와 품종 분화는 반드시 일치하지 않는다고 하는 것의 전형적인 예일지도 모른다. 


SSR이란 염기의 단순 반복 배열은 벼 게놈에서 높은 빈도로 발견될 수 있다. ACGT로 구성된 염기배열 안에는 예를 들어 ATATATAT 등이란 2염기부터 4염기의 배열로 이루어진 반복은 근연 품종 사이에서도 서로 다른 반복수를 나타내는 것이 많다. SSR은 유전자의 위치를 밝히는 연쇄 해석과 품종 식별 등에 이용된다. 그래서 이 SSR을 사용하여 인도형과 일본형 품종군 사이의 염색체 구성이 어떻게 다른지를 조사해 보았다.


벼 게놈은 12번의 염색체로 구성되어 있어, 그들 염색체의 몇 가지를 횡단하듯이 SSR을 설정하고 인도형과 일본형 품종군 사이의 반복수 조합이 어떻게 다른지를 조사해 보았다(그림3-15). 그래프의 끝에서 끝까지가 제12염색체를 나타내고, 각각의 점이 SSR 표지자의 위치이다. 세로축의 1은 인도형, 일본형 품종에 똑같은 반복수를 나타내는 SSR을 공유하고 있는 것. 0은 같은 품종군 사이에서 서로 다른 반복수밖에 안 보이는 것을 나타낸다. 그 결과, 염색체 수준에서 보는 한, 두 품종군은 같은 영역과 다른 영역이 혼재해 있다는 것을 알 수 있었다.



그림3-15 제12염색체에서 볼 수 있는 인도형과 일본형 품종군 사이에 분화된 염색체 영역. X축은 염색체 위치, Y축은 유전적인 분화 정도를 나타낸다.



이 설명으로 인도형은 일찍이 일본형과 교잡하여 유전적 조성의 일부를 교환했지만, 일본형 벼와는 다른 영역을 게놈에 지닌 채로 재배화되었다고 할 수 있다. 이와 같은 유전적으로 다른 영역은 재배화 이전의 야생 벼 집단이 가지고 있던 차이를 나타내고, 40만 년이란 연대도 추정치의 하나로 얻을 수 있을 것이다. 


인도형과 일본형 품종군에 공통으로 가지고 있는 유전자(흰쌀의 유전자)는 인도형과 일본형 사이에 서로 교환한 염색체 영역에 실려 있다. 또한 공유하고 있지 않은(분화한) 염색체 영역에는 앞에서 언급한 페놀 반응의 유전자를 시작으로, 두 품종군을 특징짓는 유전자가 실려 있다. 그림에 보이는 가장 분화한 영역에서는 지금까지 두 품종군을 식별하는 지표로 이용되어 온 동질효소 유전자 Acp1이 실려 있다. 동질효소는 전기영동이란 실험방법에 의하여 비로소 분리, 식별할 수 있기 때문에, 각 품종군에게 필요한 형질을 지배하는 유전자는 생존 능력에 관하여 중립이라고 생각되는 동질효소 유전자와 함께 실려 있다고 할 것이다.


품종군에서 서로 다른 염색체 영역에 보이는 유전자로 페놀 유전자를 들 수 있다. 같은 유전자의 실려 있는 후보 영역을 위에 언급한 방법으로 조사하면, 페놀 유전자 후보로 폴리페놀 산화효소 유전자가 적어도 세 가지 이상 실려 있는 걸 알 수 있었다. 


그 가운데 PPO1이라 불리는 유전자는 인도형에서는 정상인 유전자 배열을 가지고 있는데, 일본형에서는 그 유전자 배열 안에 트랜스포존이라 불리는 게놈 안을 여기저기 돌아다닐 수 있는 전이인자가 삽입되어 있었다(그림3-16). 그 때문에 유전자 기능은 손상되어 있다. 단, 일본형에서도 삽입되지 않은 품종이 있었다. 이것은 이른바 열대 일본형으로, 일찍이 오카 히코이치 박사가 열대도형으로 분류한 품종이다. 페놀 반응은 어디까지나 마이너스이기 때문에 트랜스포존이란 다른 원인에 의해 기능을 상실했다고 추정된다. 유전자 내부를 보면 염기배열에 다양한 치환이 발생한 것을 알 수 있었다. 이 유전자가 알곡의 페놀 반응에 관여하는지에 대해서는 앞으로 상세하게 조사해야 하겠지만, 긴밀하게 연쇄하는 것은 연쇄 분석의 결과에서도 밝혀진다. 재래종에서 염기배열에 의한 계통수를 작성해 보면(그림3-17) 인도형과 일본형 품종이 별도의 유전자 유래를 가지고 있으며, 열대 일본형은 더욱 다르기 때문에 페놀 유전자에는 다원적인 계보가 존재한다고 생각한다. 



그림3-16 PPO1에 보이는 트랜스포존의 삽입.



그림3-17 PPO1의 염기배열로부터 작성한 계통수.



이상과 같이 인도형과 일본형 품종은 서로 다른 진화의 길을 간 유전자를 무수히 게놈 안에 가지고 있으며, 일본형으로 분류되는 품종군에도 서로 다른 기원에서 성립된 집단으로 구성되어 있는 것을 알 수 있다.



알칼리로 녹인 쌀!?


일본형 쌀은 알칼리액에 담그면 팽윤하여 '붕괴'한다. 쌀은 대부분이 녹말이다. 그 녹말은 아밀로오스, 아밀로펙틴으로 구성되어 있다. 각각 글루코오스의 결합 방식이 다르기 때문에, 아밀로오스가 없어지면 찹쌀이 되고, 아밀로오스가 늘어나는 것과 함께 퍼석퍼석한 멥쌀이 된다. 이와 같은 성질도 벼의 기원을 밝히기 위한 귀중한 정보를 제공한다. 


아밀로펙틴 사슬의 길이를 조절하는 유전자는 수용성 녹말 합성효소 IIa(SSIIa)라고 불린다. 실은 이 유전자가 알칼리 붕괴의 정도를 결정하는 유전자이고, 열성의 유전자를 가지고 있을 경우 쌀이 붕괴하기 쉽다(그림3-18). 인도형, 열대 일본형 및 야생 벼에서는 우성 유전자를 가지고 있어, 알칼리 붕괴가 어려운 표현형을 나타낸다. 알칼리 붕괴의 유무는 맛과 관련되어 있기 때문에 유전자의 배열 자료까지 연구가 진행되어 있다. 그 결과, 붕괴하기 어려운 유전자라도 서로 다른 염기배열을 나타내는 품종이 있다는 것이 밝혀졌다. 여기에도 복수의 야생 벼가 재배화되어 각각의 지역에서 특징이 있는 재래 품종군이 선택되었다는 것을 시사한다. 다만 이 경우는 맛과 관련되어서 각 표현형이 선발된 뒤에 다른 지역으로 옮겨지기도 한다. 현재 어느 재래종의 재배지역이 그대로 기원지라고 말할 수는 없다. 한편 야생종은 맛으로 선발되지 않기 때문에 각 지역 야생 벼의 유전자 염기배열을 조사함으로써 서로 다른 맛의 쌀이 기원한 지역을 특정할 수 있을 것이다.



그림3-18 배젖의 알칼리 붕괴성. 왼쪽이 인도형, 오른쪽이 일본형 품종의 배젖을 알칼리액에 담근 것.




엄마는 '하나'?


사람과 마찬가지로 벼도 세포질의 유전조성(미토콘드리아 게놈, 벼에서는 엽록체 게놈도 포함됨)은 엄마에게서 유래한다. 벼로 말하면, 꽃가루를 제공하는 부분이 아니라 난세포를 제공하는 부분에서 유래한다. 그 때문에 엽록체 게놈을 조사하여 모계열을 밝힐 수 있다.


PS-ID 배열과 ORF100은 엽록체 게놈의 일부로, 치바 대학의 나카무라 이쿠로中村郁郞 박사(이 책의 기고 3 담당)의 연구에 의하여 인도형 품종과 일본형 품종의 식별에 이용할 수 있음이 밝혀졌다. PS-ID 배열은 시토신(C)과 아데닌(A)의 반복을 포함하는 350염기 정도의 배열이다. 이 mCnA(m, n은 C 및 A의 반복수)의 배열에 인도형은 8C8A 유형, 온대 일본형은 6C7A 유형, 열대 일본형은 7C6A 유형이 각각 특징적으로 발견된다. 이로부터 다원적인 모계열의 존재가 지적된다(그림3-19). 또한 ORF100 근방의 69염기의 결실도 인도형에서 특징적이며, 일본형에서는 볼 수 없다. 일부 야생 벼에서 이 결실을 지닌 것이 있다. 이런 점에서도 인도형과 일본형 품종군은 별개의 모계열에서 재배화되었다는 것이 밝혀진다. 카와카미 외(Kawakami 외 2007)는 엽록체 DNA에서 보이는 복수의 결실에 주목하여, 그 가운데 57k 영역의 분자적 다형에서 재배 벼에는 여섯 유형의 모계열이 존재한다고 보고한다. 



그림3-19 PS-ID 영역을 포함한 RPL16 유전자의 염기 다형.




탈립성은 하나의 기원


벼에는 이삭꽃을 다는 이삭이 있고, 하나의 이삭꽃 안에 하나의 현미가 생긴다. 이삭꽃 기관에 해당하는 부분이 알곡인데, 알곡이 자연히 이삭에서 탈리脫離하는 형질을 '탈립성'이라고 한다. 재배 벼는 수확할 때까지 탈립하지 않도록 되어 있다.


이 탈립성을 지배하는 유전자도 재배화에 따라 변화한 유전자이다. 탈립성을 지배하는 유전자는 여럿 존재한다. 그 가운데 야생종과 재배종 사이에 다른 유전자가 최근 발견되었다. 제4염색체에 실려 있는 탈립성의 유전자 SH3=SHA는 연구자마다 다른 유전자 이름으로 불러왔는데, 야생종에서 재배종으로 변하는 단계에서 돌연변이한 유전자임이 밝혀졌다(Li 외 2006).


수확할 때까지 탈립하면 곤란한 재배종에서는 비탈립성이란 '재배에 적합한 변이'가 선호되어 남아 있다. 이 과정을 인위 선택이라 한다. 인도형 품종과 일본형 품종은 앞에서 기술한 탈립성 유전자 내부에 똑같은 염기 변화를 가지고 있으며, 모두 이 변이에 의해 비탈립성이 된 것을 엿볼 수 있다. 이것은 우연이었을까? 지금까지 둘은 동일한 변이에 의해 생긴 유전자를 공유하고 있다고 생각되었다.


이 유전자는 어디에서 변이한 것일까? 가장 오래된 벼농사 유적은 현대의 중국 장강 유역에서 발견되었기 때문에(예를 들어 대략 1만 년 전의 벼농사 유구라고 생각되는 상산 유적 등) 중국에서 초기의 재배 과정에 비탈립성이 획득되었을 것이라 생각하는 게 신뢰성이 높은 결론이다.



태풍에서 선발된 일본형?


탈립성의 정도에 대해서는 인도형과 일본형에 차이가 발견된다. 인도형 쪽이 일본형보다 탈립하기 쉽다. 이 점에서는 인도형은 야생 벼와 같은 qSH1이란 유전자를 가지고 있다고 알려져 있다. 유전자 이름 안의 q는 양적 형질을 지배하는 유전자 자리(QTL)을 표시하는 기호이며, 탈립성(SHATTERING)의 제1염색체에 실린 유전자로서 그와 같이 이름이 붙여졌다(Konishi 외 2006). 인도형에도 일본형에도 각각 복수의 탈립성에 관련된 유전자 자리가 있는데, 인도형 쪽이 더 탈립하기 쉬운 건 그들 유전자가 지닌 탈립성 효과의 총계에 의한 것임이 발견되었다. 그중에서 가장 높은 효과를 나타내는 유전자 자리로 알려진 것이 qSH1이다. qSH1은 인도형에서는 우성유전조차 탈립성 효과를 나타내는 데 반해, 일본형에서는 열성유전으로 탈립이 어려운 효과를 가지고 있다. 그 때문에 일본형에서는 알곡을 이삭에서 떼어낼 때 이삭의 일부인 이삭가지에서 떨어져 알곡에 붙은 채로 있는 것을 빈번하게 볼 수 있다(그림3-20).



그림3-20 탈립성이 다른 일본형과 인도형 알곡의 아래쪽. 왼쪽 일본형에서는 이삭가지의 일부가 달려 있지만, 인도형은 떨켜가 발달해 있기에 이삭가지가 남지 않는다.




그림3-21 야생 벼 떨켜의 전자현미경 사진. 떨켜가 발달해서 알곡 아래쪽은 세포가 골고루 늘어서 있다.




야생 벼에는 야생 벼에 특이적으로 볼 수 있는 제4염색체의 탈립성 유전자와 인도형에 많이 보이는 제1염색체의 qSH1을 아울러 가지고 있다. 전자현미경으로 알곡이 탈립하는 부분(떨켜)을 보면 알곡이 이삭가지와 잘라져 떨어지는 걸 알 수 있다(그림3-21). 이에 대하여 인도형은 qSH1을 가지고 있지만 수확까지는 탈립하지 않는다. 오히려 탈곡하려 할 때 쉽게 알곡을 이삭에서 떨어뜨릴 수 있는 특징을 가지고 있기에, qSH1은 '안이한 탈곡형' 유전자라고도 할 수 있다. 그림3-22는 인도 시킴주의 탈곡 풍경이다. 수확한 벼를 땅바닥에서 건조하고, 원형으로 소를 걷게 하면서 알곡을 탈곡한다. 옆의 대나무 끝에는 천수국이 걸려 있다. 논의 신에게 바친다는 의미도 있지만, 꽃이 마를 때쯤이면 벼도 마른 알곡을 떨기 쉬워지기 때문에 탈곡의 적기를 가늠하는 데 필요할지도 모른다. 그러고 보니 캄보디아의 남부에서는 소녀가 이삭을 밟아서 알곡을 떨고 있었다. 이와 같은 방식으로 탈곡하는 건 일본의 벼에서는 곤란할 것이다.



그림3-22 인도 시킴 지방의 탈곡 풍경




그 이유는 일본형 벼가 열성대립유전자로 작동하는 qSH1을 가지고 있어 '탈립이 어려운 성질'을 나타내기 때문이다. 알곡을 이삭에서 떨어뜨리는 데에는 옛날부터 홀태 등의 전용 탈곡기가 이용되었다(그림3-23). 동아시아의 수확 시기는 마침 태풍이 빈발하는 때이다. 태풍의 강풍으로 수확량이 감소하지 않도록 하기 위해서는 '탈립이 어려운 성질'이 빼놓을 수 없는 것일지도 모른다. 



그림3-23 일본의 농기구, 탈곡기.




인도형의 기원


인도형은 한편으로는 야생 벼와 같은 유전자를 가지고, 다른 한편으로는 일본형과 같은 재배화에 관련된 유전자를 가지고 있다. 이 결과의 일면을 보면, 마치 인도형 재배종은 야생 벼에서 재배화되는 과정에 있다고 해석할 수도 있다. 이것을 고고학의 자료와 결부하면 다음과 같은 시나리오를 그릴 수 있다. 


재배화가 동아시아에서 발생하고, 같은 지역에서 선발된 유전자(탈립성 SH3=SHA, 흰쌀 rc)가 일원적으로 생겼다. 그들은 일본형이었다. 그 사이, 비탈립성과 함께 흰쌀 유전자를 가진 계통이 남하하여, 동남아시아 어딘가의 지역에서 '인도형'의 성질을 가진 야생 벼와 교잡되어 인도형 재배종이 성립되었다(佐藤 1996, Dorian and Sato 2008).


인도형 품종으로 생긴 유전적으로 다양한 품종군에는 늦벼와 올벼, 뜬벼 성질과 천둥지기에서 재배할 수 있는 밭벼 등으로 재배되었다. 이와 같은 품종의 일부는 앞에서 기술했듯이 11세기에는 중국에 도입되었다. 그 계통에서 중세에 일본으로 대당미로 전파된 점성도는 서일본에서 재배되었다. 그러나 내한성 등의 문제로 동일본에는 도달하지 않았다. 한편, 따로 븕은쌀 계통은 재배화의 유전자인 비탈립성을 가지거나, 다른 계열의 일본형 붉은쌀로 중국, 일본, 한국에 전파되었다. 


이 설을 뒷받침하는 증거는 와타나베 타다요渡部忠世 박사가 연와煉瓦 유적에서 발견한 알곡 모형에서 볼 수 있다(渡部 1977). 동남아시아의 사원 유적은 햇볕에 말린 벽돌을 소재의 하나로 건축되었다. 이와 같은 유적이 인도부터 중국까지 인지된다. 벽돌에 섞인 알곡의 크기를 측정하고, 유적의 연대를 역사적으로 밝혀서 벼 알곡 크기의 변천을 추적할 수 있다. 알곡의 크기에는 인도형과 대응하는 가늘고 긴 알곡(늘씬한 유형), 밭벼와 열대 일본형과 대응하는 큰 알곡(큰 크기) 및 일본형에 대응하는 둥근 알곡(둥근 유형)의 세 종류로 크게 나눌 수 있다(松尾 1952). 이들 세 종류 알곡 모형의 벼가 10세기에 태국 차오프라야강 유역에서 혼재하며, 시대와 함께 늘씬한 유형이 평야부, 큰 유형과 둥근 유형은 태국 북부와 동북부에 한정된다는 걸 보여주었다. 이것은 인도형 재배종의 성립과 그 뒤 일본형과 재배 적지가 분화되는 모습을 알려주기에 매우 유의미한 자료이다.



인도형 야생 벼


인도형이 재배 벼와 야생 벼의 교잡으로 생겼다면, 인도형 재배종의 기원지는 인도형의 야생 벼가 생식하는 지역, 혹은 일찍이 생식했던 지역이 된다. 이와 같은 야생 벼는 어디에 존재했을까?


인도형과 일본형 품종처럼 뚜렷한 유전적 형질의 분화는 야생 벼에서는 볼 수 없다. 다만, 엽록체의 DNA에 변이가 생기는 속도가 느리기 때문에, 야생 벼에서도 인도형의 염기배열을 발견할 수 있다. 앞에서 서술한 PS-ID 배열에 대하여 43계통의 루퓌포곤 변이를 조사했고, 인도형에서 특유한 유형의 배열을 보여주는 것은 4계통(태국 2계통, 인도네시아 1계통, 파푸아뉴기니 1계통)이었다. 이 4계통이 직접적인 선조종이란 건 아니고, 이와 같은 계통의 분포 지역과 유전자 배열을 상세하게 비교하여 기원지에 관한 중요한 정보를 얻을 수 있다고 기대한다. 




진화하는 벼 -교잡에 의한 유전자 변환



인도형 야생종과 일본형 재배종은 교잡했을까?


지금까지 재배 형질에 관여하는 탈립성과 흰쌀은 일원적으로 발생했다는 걸 기술했다. 그럼 게놈이 다른 인도형과 일본형 품종은 공통의 유전자를 어떻게 하여 가지게 된 것일까?


타다오 씨가 벽돌 안의 알곡 모형의 변천을 자세히 조사했을 때, 한 시기 태국 평야부에서는 다양한 알곡 모형의 벼가 공존하고 있었다. 이와 같은 공존 상태는 나중에 해소된다. 적어도 그 시기에는 인도형과 일본형 품종이 근접하여 공존하는 상황이었을 것이다.


해외 학술조사에서는 야생 벼만이 아니라 재래종도 조사의 대상으로 삼는다. 현지의 연구기관과 공동으로 재래종의 변이를 조사하기도 한다. 캄보디아도 그러한 나라의 하나이다. 이 나라에 흥미를 가지게 된 데에는 한 가지 이유가 있다. 그것은 뜬벼를 볼 수 있다는 점이다. 그리고 뜬벼가 존재하는 곳에는 수확을 위하여 올벼가 함께 재배되는 것이다. 이와 같은 다양한 벼 품종이 존재하는 것을 '생태 품종(같은 곳의 다른 생활사 습성을 가진 품종군)'으로 분화되어 있다고 한다. 


생태 품종의 대표 사례는 갠지스강 유역의 벵골 지역에서 볼 수 있는 아우스aus 품종군과 아만aman 품종군이다. 또한 똑같은 생태 품종을 캄보디아 똔레샵 호수 주변에서도 볼 수 있다. 캄보디아의 우기는 5월 말에 시작해 8월에 소강되었다가 9월에 집중적으로 비가 내린다. 10월부터는 비가 거의 오지 않고, 가장 건조함이 격심한 때가 3월부터 5월 무렵이다. 재배종인 뜬벼를 필자가 처음으로 본 건 앙코르와트로 유명한 씨엠립이었다(그림3-24).



그림3-24 앙코르와트



이 마을에는 각종 저수시설과 사원이 앙코르 유적군으로 존재하고 있기 때문에, 많은 여행자가 방문하는 관광명소가 되었다. 앙코르와트를 둘러싼 해자의 한 변은 1킬로미터 이상이다. 이 유명한 유적을 지나면 거대한 돌로 만든 불상이 서 있는 바이용 사원이 있다. 여기도 주변에 해자를 판 앙코르와트보다 거대한 복합 시설을 포함한 사원이다. 차가 통과할 수 없는 서문을 지나서 30분 정도 걸으면 서바라이라는 인공 저수시설이 보인다. 1020년에 완성된 서바라이는 동서 8킬로미터, 남북 2킬로미터의 제방을 가진 인조 호수이다. 그 동쪽 끝에 가까워질 때 가장 먼저 마중을 나온 건 물소였다. 좁은 모래흙의 길을 지나면 벼들이 호수의 주변 언덕에 자리를 잡고 있다. 농가의 사람은 어디에 있지 하고 생각하면, 물에 허리까지 잠기어 벼의 윗부분을 베는 일을 하고 있느라 정신없었다. 근처에 떠 있는 배에는 베어낸 벼의 이삭이 실려 있으며 언덕에 올려 말리고 있었다. 말린 뒤에야 물소의 차례가 되어, 농가까지 운반할 것이다(그림3-25, 3-26).



그림3-25 1월에 서바라이에서 볼 수 있는 뜬벼 수확 풍경. 깊은 연못은 뜬벼의 논이며, 농부가 허리까지 잠긴 상태로 윗부분을 베는 일을 하고 있다.




그림3-26 서바라이의 수확 풍경에서는 물소의 활약을 볼 수 있다. 사진은 물소에게 지우는 수레.




이처럼 깊은 물 지대에서는 5월에 파종하여 9월까지는 물을 빼는 논 같은 곳에서 모를 기른다. 그 사이에도 재배 벼는 야생 벼와 공존하고 있다. 9월부터 급속히 수량이 늘고, 그 다음에는 물에 잠긴 상태에서 재배가 이루어진다. 물이 적은 때에는 다른 품종을 사용해 거의 같은 장소에서 여러 가지 품종을 심고 있는 것이다. 물론 종자는 자가채종이 기본이다. 12월에 방문했을 때 벼는 아직 대부분 물에 잠겨 있었다. 새해 무렵부터 차차 이삭이 나와, 꽃이 피고 익으며 수확이 이루어질 것이다. 9개월이나 기르는 뜽벼는 수확효율이 나쁘기 때문인지 현재는 홍수가 일어나는 곳에서만 재배한다. 


이 뜬벼의 특징은 세포질(엄마 게놈)이 일본형이면서 핵 게놈은 인도형과 일본형 품종의 특징을 함께 가지고 있다는 점이다. 거꾸로 세포질이 인도형이면서 핵은 인도형과 일본형 품종의 중간인 특징을 가지는 경우도 있다. 뜬벼 재배 품종의 유전적 성질은 갠지스강 유역의 벵골 지역에서도 마찬가지이다.


뜬벼 성질은 원래 여러해살이 야생 벼에서 유래하는 성질이기 때문에, 야생 벼에서 재배 벼에 도입되어 그 후대의 유전적 분리에 의해 다양한 품종이 생겨났다고 생각한다. 서바라이의 뜬벼를 재배하고 있는 곳에서는 야생 벼와 재배 벼가 혼재해 있는 상태를 볼 수 있다(그림3-27). 이와 같은 환경에서 둘의 교잡으로 새로운 성질을 가진 재배 품종이 생겼을 가능성을 생각할 수 있지 않을까? 조생 인도형 품종의 출현도 이처럼 다양한 품종과 관련되어 있을 것이다. 조생 아우스 품종군은 대당미와 유전적으로 유사하며, 둘도 인도형과 일본형 벼가 교잡하여 생겼음을 알 수 있다(Ishikawa 외 2002). 앞에서 서술했듯이 대당미의 원산지는 점성국인데, 이 나라는 힌두교의 영향을 강하게 받은 종교국가였다. 벵골 지역도 당연히 종교와 깊은 관계가 있었던 곳이다. 이러한 관계를 고려하면, 똑같은 재배 벼가 두 지역에서 주로 재배되었어도 이상한 일이 아니다. 



그림3-27 8월의 서바라이. 위: 논. 아래: 이미 물에 잠겨 있는 논에서는 연꽃과 섞여 있는 야생 벼를 볼 수 있다.



아우스 품종군과 같은 유전적 성질은 캄보디아의 재래종 조사에서도 밝혀졌다. 동남아시아와 남아시아의 어느 쪽, 혹은 두 지역에서 인도형과 일본형의 교잡 후대에서 다양한 형질 조합을 지닌 개체가 생겨서 인간이 이동할 때 한쪽에서 다른쪽으로 옮겼을 것이다. 



인도형과 일본형 품종은 어디에나 정착하는가


벽돌의 알곡 크기 조사에서 인도형 품종과 일본형 품종은 한 시기에 태국 중앙 평야의 거의 같은 장소에 존재했는데, 이윽고 몇 세기를 거치며 각지로 확산되어 갔음을 알았다. 그 뒤 인도형과 일본형 품종이라 생각되는 벼는 어디에 있었던 것일까? 


운남성, 부탄 및 네팔 등 표고차가 있는 지역에서 재배되는 벼는 고지대에 일본형, 저지대에 인도형, 또 그들의 중간지대에는 둘이 혼재해 있음이 알려져 있다(松尾 1992, 佐藤 1992, Sano and Morishima 1992). 자연식생에는 없는 재배식물이 이처럼 나뉘어 살고 있는 것처럼 보이는 건, 필시 표고차에 대한 적응으로 생긴 결과라고 생각한다. 농민은 자신이 알지 못하는 토지에서 얻을 수 있는 작물을 심어 보는 일이 많기 때문에, 타지에서 가지고 돌아온 재배식물을 재배하여 최종적으로 그 땅에 적응한 것이 남았다고 생각한다.


마찬가지 사례가 일본에서도 발견된다. 청일전쟁이 끝난 뒤, 귀환자가 가지고 돌아와 재배된 벼 품종으로 '개선凱旋'과 '전첩戰捷' 등이 알려져 있는데, 벼의 질병인 도열병에 강하기 때문에 이들은 일본에 정착했다. 일본에 건너온 대당미도 마찬가지의 경위를 더듬어 찾을 수 있을 것이다. 단, 대당미의 사례에서는 큐슈, 시코쿠 등을 중심으로 서일본에서는 농사지었지만 동일본 칸토우보다 북에 정착한 사례는 없었다(嵐 1974). 이것도 품종이 지닌 적응성의 한계가 있었던 것이다. 



도대체 벼는 자연에서 교잡하는가


인도형과 일본형이란 두 가지 품종군의 기원이 교잡에 의한 것이라면, 그러한 교잡은 빈번하게 발생하는 것일까? 그 선명한 실마리를 주는 것이 '잡초 벼'이다. 야생 벼와 재배 벼가 혼재하는 조건에서는 높은 빈도로 둘의 교잡이 발생하고, 그 후대는 탈립성 등에서 통상의 재배종과는 다른 성질을 나타낸다. 벼에는 있지만 야생 벼에도 재배 벼에도 없다. 이것을 '잡초 벼(weedy rice)'라고 한다. 동남아시아의 재배 농가에는 잘 알려져 있다.


미얀마를 조사했을 때에도 야생 벼가 재배 벼의 근처에서 자라고 있는 것을 볼 기회가 있었다. 북부의 번화한 거리, 미치나에서 남으로 내려가면 논 지대가 펼쳐져 있다. 논이 열려 있는 곳은 예전의 습지대를 개간했던 곳인 듯했다. 11월은 벼베기의 게절이라서 말라 있을 거라 생각했더니 논과 그 주변은 아직도 축축하여 아침이슬이 내려앉아 있었다. 그 안을 벼베기를 하려는 것 같은 농민과 그를 돕는 젊은 여성들이 노래를 부르면서 같이 가서 논에 모였다. 그때 우연히 논에서 눈에 들어온 이상한 것이 황금색의 이삭들 사이에 섞여 있는 걸 보았다. 검은색을 띠고 알곡의 끝에 가늘고 긴 '털'이 달린 야생 벼였다(그림3-28). 논 옆의 둠벙에서도 볼 수 있었다. 야생 벼와 재배 벼가 매우 가까운 위치에서 공존하고 있는 모습에 강렬한 인상을 받았다.



그림3-28 미얀마에서 볼 수 있는 야생 벼. 논 안에 살고 있다. 뒤쪽에 보이는 건 공동 수확 작업을 하러 가는 현지의 여성들.



현지 사람은 야생 벼의 존재를 알아차리고 있을까? 들어 보면 되돌아 왔던 건, 지금으로서는 왠지 운치 있는 말 아닌가? 야생 벼를 '신의 벼'라고 한다. 그 말을 듣고 납득했다. 여기는 불교의 나라, 신이라 해도 부처님이다. 파고다(절)이 있으면 맨발로 참배를 한다. 농민들은 '스스로 심지 않았는데 자라 온 벼는 신이 심은 것이다'라고 생각하는 것 같다. 이처럼 야생 벼를 받아들이고 있기에, 도처에 재배 벼와도 혼재하며 자연히 교잡할 기회가 늘어났을 것이다. 이와 같은 장소에서는 재배종에 유사하면서도 탈립성을 나타내는 잡초 벼를 빈번하게 볼 수 있다.


잡초 벼는 미얀마를 시작으로 부탄과 태국, 캄보디아, 베트남, 필리핀 등의 동남아시아 각지에서 발견된다. 또 중국과 한국, 일본, 미국 등 온갖 곳에서 발생하고 있다. 일본과 한국, 미국 등에는 야생 벼가 없기 때문에, 인도형과 일본형 품종군 사이의 교잡에서 잡초 벼가 생겼음이 알려져 왔다. 잡초 벼는 야생종과 재배종이 근접하여 생육하고 있는 지역과 인도형과 일본형 품종이 근접하여 재배되는 지역에서도 발생하고 있는 듯하다.



재래종에서 보이는 교잡 후대의 자손들


일본의 재래종에도 다양한 교잡의 '흔적'이 있다. 분자표지(단백질과 DNA에 의해 개체를 식별하는 지표)의 개발에 따라 일본의 재래품종의 독자성이 밝혀져, 바뀐 벼가 있다는 것이 점차 알게 되었다. 


초기에 활용딘 분자표지는 단백질의 전하성질 특성으로 동일한지 확인된 동질효소라는 유전자 연구였다. 일본 재래종 중에는 유전적 다양성에 부족한 것으로 나타났지만, 재래 논벼 450 가운데 5계통, 재래 밭벼 200 가운데 5계통에서는 다른 것과는 다른 유전적인 성질이 나타났다. 아시아의 벼와 비교하니, 특수한 벼는 인도형에 대응하는 것임이 밝혀졌다. 다른 형질도 포함하면 일본의 재래품종은 크게 다음 네 가지로 구별됨이 밝혀졌다.


(1) 전형적인 논벼 품종군=유전적 다양성이 매우 부족함

(2) 논벼에 가까운 형질을 나타내는 밭벼

(3) 논벼와 유전적으로 분화된 밭벼

(4) 논벼와 밭벼에 공통되는 인도형 품종(대당미)


특히 세 가지 밭벼는 제11염색체에 실린 동질효소 유전자인 Pgd1 유전자형 이외에는 논벼에 매우 유사했다. Pgd1에는 복수의 대립유전자가 알려져 있어, 인도형이라고 판별된 대당미는 논벼 및 밭벼의 주요 품종군과도 다른 유전자를 가지고 있었다.


다른 형질을 보면, 인도형은 왕겨털이 짧고 가늘고 긴 알곡을 가지며 알곡의 페놀 반응은 +형을 나타냈다(표3-1). 한편 DNA 배열 단편의 장다형 패턴(RFLP)의 해석과 알칼리 붕괴성, 중배축 길이의 해석에서는 밭벼의 주요 품종군은 열대 일본형과 온대 일본형의 중간적인 성질을 나타냄이 밝혀졌다. 세포질의 다양성을 PS-ID에서 보았을 때도 온대 일본형에서 특징적인 6C7A형과 열대 일본형에서 특징적인 7C6A 두 종류가 발견되었다.



집단

품종군

Pgd1

공식수

왕겨털 길이

알곡의 길이-너비 비율

페놀 반응

 +

-

논벼

일본형

인도형

1

3

445

5

0.72±0.19

0.37±0.12

2.09±0.34

2.79±0.16

32

4

413

1

밭벼

일본형

일본형

인도형

1

2

3

26

169

5

0.65±0.12

0.44±0.14

0.34±0.13

2.14±0.16

2.38±0.21

2.93±0.09

5

131

4

21

38

1

표3-1 일본 재래 벼의 형태와 생리형질의 특성과 인도형(I)·일본형(J)으로 분류



이상에서 일본의 밭벼는 열대 일본형이 고위도 지대에 전파되었을 때 온대 일본형과 교잡을 일으키고, 적응형질에는 도태를 일으켰음에도 불구하고 선택되지 않았던 세포질에 대해서는 두 종류가 혼합되어 오늘날에 이르렀음을 엿볼 수 있다. 


일본 재래 논벼의 PS-ID는 6C7A형이 점하고 있으며, 예외적으로 인도형 품종 특이적인 8C8A형이 발견된다. 그러나 이 세포질을 가진 계통의 핵 안 유전자형은 완전히 일본형이었기 때문에, 인도형과 일본형의 교잡이 발생한 뒤에 핵형이 일본형이 된 계통이었을 것이라 생각한다. 언뜻 보기에 동일하게 보이는 재래종에도 꽤 복잡한 과거의 교잡과 유전적인 분리를 거쳐 집단의 구성원이 된 재래종이 있는 듯하다. 


형태와 생리적인 형질로 인도형이라 판별된 집단 안에는 '당법사唐法師' 등 대당미에 속한 품종 이름을 볼 수 있다. 대당미는 황폐한 땅에 강하고, 그 때문에 논벼와 밭벼로 겸용되었을 것이다. 게다가 그 특징으로 가늘고 긴 알곡, 붉은쌀, 올벼 등을 볼 수 있다. 다만, 붉은쌀이란 성질은 봉납미로 이용되었던 것으로 인해 선발되었을 가능성도 있다. 


일본의 재래 논벼와 밭벼에서 발견되는 대당미 관련 품종군의 특성을 보기 위하여, PS-ID와 ORF100 영역의 결실 유무를 조사했다. 인도형 품종군에서는 ORF100의 유전자 주변 영역에서 결실형을 나타내고, 일본형에서는 비결실형을 나타내는 것이 밝혀졌다. 게다가 결실형의 엽록체는 8C8A형의 PS-ID를 함께 가진다는 것을 알 수 있다. 대당미 품종군이라 밝혀진 논벼와 밭벼의 계통에는 ORF100 비결실형의 세포질을 가진 계통이 혼재해 있었다. 비결실형(일본형)이었던 세 계통의 핵 유전자형은 인도형이고, 핵과 세포질의 이질적 조합이 확인되었다(표3-2).



페놀 반응

공식수

ORF100

인도형(결실)

일본형(비결실)

+형

17

6

11

-형

19

14

5

표3-2 아우스 품종군에서 발견한 핵과 세포질 유전자형의 불일치성

  


아시아 재래종 벼의 특성과 비교조사한 결과, 대당미는 갠지스강 하류 삼각주 지대(벵골 지역)의 아우스 품종군과 같은 특성을 나타냈다. 똑같은 특징이 캄보디아의 재래종에서도 발견된다. 이것으로 대당미, 아우스 품종군은 인도형과 일본형의 교잡 후대에서 이삭이 패는 특성으로 조생이라 선발된 품종이란 것을 강하게 시사한다. 다만, 야생 벼에서도 두 세포질형의 존재를 발견할 수 있기에 잡종 형성이 야생 벼와 재배 벼에서 발생했을 가능성도 부정할 수 없다. 특히 같은 곳에서 적응 분화한 강한 감광성을 지닌 뜬벼는 야생 벼에서도 볼 수 있는 특성이기 때문에 앞으로 조사가 기대된다.



잡초 벼의 보편성


 일반적으로 재배품종은 인도형과 일본형 두 가지로 크게 나뉘는 게 사실이지만, 앞에서 기술했듯이 교잡한 계통에서 유래한다고 생각되는 품종을 도처에서 볼 수 있다. 많이 보이는 건 벵골 지역과 캄보디아이다. 재배종이지만 잡초 벼의 유전적 특성도 공통으로 있는 특징이다. 이들 벼의 유전적 특성과 과거에 교잡이 발생한 지역을 특정할 수 있다면 인도형의 기원을 밝힐 수 있을 것이다.


728x90

'농담 > 읽을거리' 카테고리의 다른 글

대담 유라시아의 풍토와 농업  (0) 2018.05.02
와츠지 데츠로와 풍토  (0) 2018.04.16
어디까지 쓰이는가? DNA  (0) 2018.04.11
벼농사의 전개와 전파  (0) 2018.04.11
논벼농사와 고기잡이  (0) 2018.04.06
728x90

일본의 한 유기농 농부가 발명한 "호킹"이란 제초 방법. 

호킹은 빗자루(ほうき)라는 일본어에 현재진행형을 나타내는 영어의 'ing'를 붙여서 만든 단어이다. 그러니까 한국어로 옮기자면, "비질"이라고 할 수 있겠다. 

이 제초법으로 논밭에서 벼와 밀, 보리, 잎채소 등의 그루가 자라고 있는 사이에 잡초만 초기에 제거할 수 있다고 한다.  

    이를 개발한 사람도 잠시 소개하자면, 오리농법의 선구자로 알려진 후쿠오카현 게이센정桂川町에서 유기농업을 하는 후루노 다카오古野隆雄(67) 씨이다. 농약을 쓰지 않고 잡초를 방제하는 것이 성공의 열쇠인데, 고랑 부분은 기계 등으로 제초가 쉬운 반면 작물들 사이는 그것이 어려워서 궁리하다 개발했다고 한다. 보통 고랑 부분은 제초가 쉽지만 두둑에서 자라는작물은 그렇지 않아 개발된 것이 제초제 저항성 유전자변형 작물이 아니겠는가. 그걸 사용하지 못하여 대신 쓰는 방법이 두둑에 비닐을 덮는 방법 아니겠는가. 아무튼 역시 현장의 농부가 혁신가이다. 

    이 제초기는 구매할 수 있는 게 아니라, 그냥 시중에서 판매하는 철제 갈퀴를 사다가 4-5개를 겹쳐서 만들면 된다고 한다. 아래 동영상에 그 방법이 나오니 손재주 좋은 분들은 직접 만드실 수 있을 것이다. 그래도 간단해 보이지만, 작물과 풀의 뿌리가 서로 다른 위치에 있다는 걸 관찰하며 고안한 것이라 처음부터 그대로 따라하기 어려울 수 있다. 그래도 시도할 만하지 않은가! 




    728x90

    '농담 > 농법' 카테고리의 다른 글

    유기농 벼농사와 미꾸라지  (0) 2018.06.11
    파리지옥 재배  (0) 2018.04.27
    색상, 형태, 무늬로 토양과 퇴비를 판단하다  (0) 2018.03.13
    농생태학, 최선의 농법  (0) 2018.02.21
    논밭에 꽃을 심자  (0) 2018.02.05
    728x90

    미국의 오하이오주가 지금은 옥수수와 대두로 뒤덮인 농업지대가 되었지만, 아주 오랜 옛날 이곳에 살던 원주민들은 섬프위드와 명아주, 메이그라스, 명아자여뀌 같은 걸 주로 먹고 보리를 아주 조금 이용했다는 고고학의 이야기. 그러니까 지금은 잡초로 취급되는 것들이 주식이었단다. 옥수수는 멕시코에서 작물화된 이후 서기 900년 이후에나 들어왔다고 한다.


    http://www.dispatch.com/news/20170820/archaeology-ancient-seeds-pollen-show-ohios-lost-crops



    섬프위드



    메이그라스



    명아주



    명아자여뀌


    728x90

    '농담 > 농-문화' 카테고리의 다른 글

    일본의 논 아트  (0) 2017.09.06
    농사와 두개골의 변화  (0) 2017.08.26
    인류는 왜 농사를 짓기 시작했는가?  (0) 2017.07.02
    텃밭정원이 아니라 뜰밭!  (0) 2017.06.27
    심각한 미국 농민들의 자살률 문제  (0) 2017.06.21
    728x90
    아래 사진은 미국에서 장기 프로젝트로 진행된 연구결과를 단적으로 보여주고 있다. 똑같은 밭에 똑같은 농사법으로 사탕무를 심었는데, 위는 풀이 덜한 반면 아래는 풀에 덮여 사탕무를 찾아보기 힘들 정도이다.



    아, 아니다. 똑같은 농사법이 아니다. 위는 작부체계가 옥수수-대두-봄밀-사탕무 이고, 아래는 옥수수-대두-옥수수-사탕무 라고 한다. 그러니 작부체계만 다를 뿐인데, 똑같은 양의 거름을 주고 똑같은 시기에 같은 방법으로 농약을 치고 했어도 풀의 발생에서는 차이를 보인다.

    이것이 바로 돌려짓기 작부체계의 효과이다. 그런데 이렇게 효과적인 작부체계가 확산되지 않는 건 왜인가? 역시나 경제적 문제 때문이겠다. 옥수수와 대두는 중요한 산업작물로, 즉 돈이 되는 작물이다. 그러니 최대한 자주 많이 재배해 수확하면 그만큼 이익이 남는 농사가 된다. 그런데 거기에 이렇게 풀을 억제하는 효과를 좀 보자고 이상한 작물을 하나나 몇 가지 더 끼워 넣으라고? 말이 안 되는 소리이다.

    그러나 모두 똑같은 농사를 짓는 것은 아니기에, 조금 더 다양한 작물을 화학투입재에 의존하지 않고 재배해도 판로가 확보되는 사람이라면 이야기가 달라진다. 그런 사람에게는 위와 같은 방식이 훨씬 더 효과적일 것이다. 물론 그 판로라는 것이 아직까지는 별로 다양하지는 않다. 생협이 그나마 안정적이라고나 할까?

    아무튼 작부체계를 잘 짜는 일이 중요하다는 생각거리를 던져주는 사진이다.


    728x90
    728x90
    매우 재미난 연구결과입니다.



    개밀의 경우, 영양 경쟁보다 빛 경쟁에 더 취약한 모습을 보인다고 하네요. 영양 경쟁을 할 때는 오히려 뿌리줄기를 더욱 발달시켜서, 이듬해에 또 그 뿌리줄기들에서 더 많은 싹이 나타날 가능성이 높아진다는 겁니다.

    그러니까, 여러해살이 풀인 개밀을 억제하는 데에는 그들이 빛을 덜 받도록 농경지의 환경을 조성하는 것이 더 효과적이라는 이야기입니다. 한번 싹 풀을 잡고, 잎이 넓어 그늘이 많이 지는 작물이나 그 사이짓기로 덮개작물을 잘 활용하면 개밀 같은 풀들이 밭을 장악하는 일을 효과적으로 막을 수 있다는 게 이 연구의 의의가 아닐까... 합니다만.


    논문은 여기 있는데, 돈을 내야 볼 수 있답니다. 흙흙.


    728x90
    728x90

    들어가며

    덮개작물을 재배하면 몇 가지 방법으로 풀을 이길 수 있다.

    • 직접 경쟁
    • 타감작용(Allelopathy) —식물의 성장을 방해하는 물질을 방출
    • 풀씨가 싹트는 걸 막는 자극제
    • 토양의 미생물 군집을 바꾸어 특정한 풀에게 불리하도록 만듦

    덮개작물을 갈아엎고, 베고, 말아 버리거나 여러 방법으로 없애 그 잔류물로 풀을 계속 억제할 수도 있다. 

    • 싹이 나오는 걸 물리적으로 방해 (잔류물이 지표면에 덮여 있으면)
    • 부식되면서 타감물질을 방출
    • 풀에 병을 일으키는 균류를 촉진
    • 질소(N) 기아 (질소질이 적은 잔류물을 토양에 넣었을 때)

    경쟁

    활발하고 빠르게 자라는 덮개작물은 공간 및 빛과 양분, 습도를 놓고 풀과 한판 대결을 펼칠 수 있다. 이들이 자라는 동안, 경우에 따라서는 풀의 성장을 80-100%까지 줄일 수 있다니 놀랍지 않은가. 밭을 잠시 비워 놓았을 때 그 공간에 덮개작물을 "적시에" 재배하는 게 관건이다. 

    • 작물을 수확한 뒤
    • 겨울철
    • 늦봄이나 여름에 다른 작물을 심기 전
    • 작물을 심은 줄 사이의 공간이 넓을 때

    따뜻한 토양에 심은 메밀(그림 1의 왼쪽), 콩, 동부는 2-3주면 땅을 덮을 수 있다. 이들의 "덮지붕"이 막 싹이 튼 작은 풀들을 그늘지게 해 성장을 방해한다. 여름이나 겨울에 토양의 수분과 양분에 적합한 수수-수단그라스, 다양한 조(그림 1의 오른쪽), 귀리, 호밀, 밀 같은 고밀도의 수염뿌리를 지닌 한해살이 풀들을 이용해 잡풀을 줄일 수 있다. 콩이나 넓은 잎을 지닌 작물을 조합하면 효과를 배가 시킬 수 있다(그림 2).

    그림 1. 작물을 거두고 심은 지 15일 만에 땅을 뒤덮은 메밀(왼쪽). 오른쪽의 진주조는 많은 양의 바이오매스를 형성하고, 대부분의 잡초를 효과적으로 몰아냈다.


    그림 2. 풀-콩과식물의 이중 덮개작물은 한 종류만 심을 때보다 더 효과적으로 풀과 경쟁할 수 있다. 겨울을 이용해 재배한 이덮개작물들은, 호밀이 고밀도의 수염뿌리를 이용해 겉흙을 헤집어 털갈퀴덩굴이 더욱 활발히 성장할 수 있도록 도와 지표면에 그늘이 짙게 드리우게 만들었다. 이렇게 덮개작물을 활용하면 풀들이 매우 적게 나타난다.


    빠르게 자라는 조 종류, 사료용 콩, 수수-수단그라스는 심은 뒤 65-70일 이내에 120-220cm 까지 자라며, 이후 300평에 1톤의 바이오매스를 얻을 수 있다. 이때 덮개용 풀은 질소를 300평에 11-17kg까지 빨아먹고, 콩과식물은 300평에 23kg의 질소를 고정시킬 수 있다. 겨울철 곡식 작물, 특히 호밀은 매우 낮은 온도에서도 자랄 수 있어 초봄에 풀들보다 훌쩍 커 버린다. 초봄에 심은 귀리와 완두는 하지 무렵 90-120cm까지 자라고, 300평에 750kg의 바이오매스를 생산할 수 있다.


    수수와 수단그라스를 이용해 많은 바이오매스를 생산하며 풀을 억제하는 덮개작물로 활용하는 다음과 같은 멋진 사례를 보라. 


    토끼풀은 천천히 출발하기에 처음에는 좋은 경쟁자가 되지 않는다. 그러나 어린 토끼풀, 특히 붉은토끼풀은 그늘에서도 잘 견디기에 농작물이 자라고 있을 때 사이짓기하거나 그 위에 파종해도 된다. 작물을 수확해 거두면 그 공간을 토끼풀이 빠르게 장악하여, 키가 큰 품종들 -맘모스 레드, 크림슨, 버심 등- 같은 경우에는 풀들과도 잘 싸우며 자란다. 강력한 덮개작물들은 씨앗에서 싹이 터 자라는 여러 한해살이 풀들을 실질적으로 차단시킬 수 있다. 뿌리와 뿌리줄기, 또는 덩이줄기에서 나오거나재생되는 여러해살이 풀들을 억제하는 건 더 어려운 일이긴 하다. 그래도 적극적인 덮개작물을 재배하여 그들이 자라고 번식하는 걸 최대한 줄일 수 있다.


    덮개작물이 활발히 성장하고, 빛을 차단하고, 토양의 수분과 양분을 이용하는 한 나중에 나오는 풀들은 거의 자랄 수 없을 지경이 된다. 풋거름으로 덮개작물을 갈아엎으면 할 수 있는 한 빨리 다음 작물을 재배해서 빈 공간을 점령해 버리는 게 좋다.


    타감작용(Allelopathy)

    모든 식물은 다른 식물의 성장에 영향을 주는 다양한 물질을 방출한다. 활성 화합물이 살아 있는 식물의 뿌리에서 삼출되고, 잎에서 씻겨 내려가며, 빗물에 의해 토양으로 침투하거나 잔류물이 부식되며 방출될 수도 있다. 이러한 자연제초제라고 할 수도 있는 타감물질(allelochemical)은 씨앗에서 싹이 틀 때, 어린 싹 등 풀들이 어릴 때 가장 큰 영향력을 미쳐 성장을 지연시키고, 뿌리나 싹에 큰 피해를 입히거나, 심할 경우 완전히 죽일 수도 있다. 호밀과 기타 겨울철 곡식 작물, 수수, 수수-수단그라스 교잡종, 편두, 메밀, 유채, 땅속토끼풀 들은 풀을 통제할 만큼 강력한 타감작용을 한다는 현장의 실험이 보고되어 있다(Putnam and Tang, 1986; Rice, 1995; Boydston and Hang, 1995).

    유채와 겨자채, 순무를 포함하는 십자화과의 덮개작물은 글루코시놀레이트glucosinolate라 불리는 화합물을 함유하고 있다. 그래서 그들의 잔류물이 부식되는 동안 이 화합물이 이소티오시아네이트isothiocyanate라는 강력한 휘발성 타감물질로 분해되며, 이것이 다른 식물들의 성장과 미생물의 활성에 영향을 미치게 된다. 현장 실험에서, 몇몇 십자화과 덮개작물은 그걸 갈아엎은 뒤 몇 주에서 한 달 동안 풀의 성장을 억제했다(Al-Katib et al., 1997; Boydston and Hang, 1995). 그러나 순무 덮개작물이 풀을 억제한 건 타감작용이 아니라, 주로 풀의 발아를 억제하는 가벼운 효과임이 드러났다(Lawley et al., 2012). 

    각각의 식물들이 독특한 타감물질의 조합을 제공하면 어떤 건 이런 타감물질에 민감하게 반응하지만 저런 것엔 내성이 있고,또 어떤 건 그 반대이고, 저마다 다종다양한 상호작용이 일어나게 된다. 예를 들어, 겨울 호밀과 그 잔류물은 명아주나 쇠비름, 바랭이 같은 풀에는 아주 효과가 좋은데, 결명자나 돼지풀, 나팔꽃 같은 것에는 훨씬 덜하다. 해바라기와 땅속토끼풀은 나팔꽃을 억제하고, 수수는 향부자와 버뮤다 그래스는 물론 여러 작은 씨앗의 한해살이 풀을 방해한다. 

    덮개작물의 타감작용은 일부 채소 작물에도 해를 끼칠 수 있는데, 특히 작은 씨앗의 작물을 덮개작물 이후에 곧바로 뿌리면 그러하다. 상추가 특히 타감물질에 민감하다. 한편, 큰 씨앗과 채소 모종들은 일반적으로 잘 견딘다. 토마토와 여타 가지과의 채소들은 최근에 거두어 버린 호밀이나 털갈퀴덩굴이 있는 곳에 옮겨심으면 농사가 더욱 잘 된다(Smeda and Weller, 1996). 겨울철 곡식을 활용한 덮개작물의 잔류물은 양배추의 성장은 방해하지만, 완두와 콩, 오이 등의 성장은 촉진시킨다(Putnam and DeFrank, 1983; Putnam et al., 1983).

    직접적 경쟁과 달리, 타감작용에 의한 풀 억제 효과는 덮개작물을 치운 뒤에도 몇 주 동안 지속될 수 있다. 풋거름으로 가장 크게 자랐을 때 갈아엎으면 효과가 강렬하지만, 경운한 깊이 때문에 그 효과는 비교적 짧게 반짝하다 사라진다. 지표면에 덮개작물의 잔류물을 그냥 흙의 덮개로 놔두면, 기상 조건에 따라 그 효과가 3-10주 정도는 지속된다. 따라서 무경운 덮개작물 농법이 주로 타감작용이 일어나는 구역 아래로 뿌리를 뻗게 되는 모종으로 옮겨심거나 큰 씨앗을 가진 채소를 농사지을 때 작은 씨앗을 가진 한해살이 풀들을 억제하게 되는 선택적 효과를 제공한다.

    이러한 "위치별 선택적 효과" 외에도, 어떤 타감물질은 더 큰 씨앗을 선택할지도 모른다. 페트리 접시에서 발아를 시험하니 완두 씨앗(큰 것)은 털비름 씨앗(작은 것)보다 저농도(1-5ppm)의 다양한 이소티오시아네이트에 훨씬 더 내성이 있었고, 돌피씨앗(중간)은 중급의 감도를 나타냈다. 십자화과 덮개작물 이후에 채소를 재배하는 현장 실험에서도 비슷한 현상이 관찰되었다. 덮개작물의 풀 억제 효과는 적어도 채소를 재배하는 시기의 일부 동안 지속되었음에 반하여, 감자(Boydston and Hang, 1995)와 완두, 시금치(곧뿌림), 양파(자구) 및 옮겨심은 상추의 수확량에는 영향을 주지 않거나 개선되지 않았다(Al-Khatib et al., 1997; Schonbeck, 2007).  

     


    풀 씨앗의 발아

    잠시 반짝이는 여과되지 않은 직사광선이나 심지어 보름달이 몇 분만 비추어도 수많은 작은 씨앗의 풀들의 싹이 틀 수 있다. 하지만 식물의 덮지붕으로 가려져 토양에 도달하는 녹색의 빛은 풀의 발아를 억제하는 경향이 있다(그림 4). 이는 많은 씨앗들이 분자 구조의 스위치로 작동하는 피토크롬이라 불리는 특별한 화합물을 통해 빛의 질을 감지하기 때문이다. 붉은색의 빛(햇빛에 풍부함)은 "지금 발아하라"고 스위치를 탁 켜는 반면, 붉은색이 부족하고 근적외선이 풍부한 빛(적색과 적외선 사이의 파장으로 사람의 눈으로는 거의 볼 수 없음)은 "휴면상태로 가라"고 스위치를 팍 꺼 버린다. 녹색 잎의 엽록소는 대부분의 붉은빛을 흡수하고 근적외선을 통과시키는데, 풀 씨앗의 피토크롬은 이를 현재 덮지붕으로 그늘이 져 있다는 신호로 감지한다. 그래서 여기서 사는 게 좋지 않은 상황이라고 판단하는 것이다. 여러 초봄의 한해살이 풀이 가을에 싹이 트기 시작하는데, 무(그림 3)를 심은 이후에 놀랄 만큼 봄의 풀들이 억제되는 건 주로 무의 덮지붕으로 완전히 가로막혀서 빛의 질이 변화한 결과이다. 그러니까 사료용 무로 풀을 잘 억제하려면, 초기에 덮개작물을 파종하여 덮지붕으로 완전히 빛을 가로막는 게 중요하다는 걸 보여준다(Lawley et al. 2012). 무와 사료용 무에 대한 더 많은 정보는 무 -유기농업의 새로운 덮개작물을 참조하라. 털갈퀴덩굴이 덮개작물로 풀을 억제하는 효과의 일부도 이러한 빛의 질에 기인하는 것으로(Teasdale and Daughtry, 1993), 이렇게 풀을 억제하는 현상은 메밀 같은 여타의 고밀도 덮지붕 덮개작물을 심은 이후에도 관찰되곤 한다(그림 1).


    그림 3. 8월에 심은 덮개작물용 무가 가을에 무성한 덮지붕으로 땅을 덮었다(왼쪽). 이 작물은 겨울에 죽어 그 잔류물이 3월쯤 거의 사라지는데, 가운데 사진이 그 모습이다. 무를 심었던 곳에서는 겨울철 풀이 거의 보이지 않는 반면, 다른 덮개작물을 심어 그것이 겨울에 죽고 잔류물이 남아 있는 곳에서는 별꽃 등이 활발하게 자라는 걸 볼 수 있다. 초봄의 별꽃과 기타 여러 한해살이 풀들은 가을에 싹이 트기 시작한다. 무의 덮지붕이 가을에 빛을 차단하여 이러한 풀들이 싹트지 못하게 하는 것이다. 사진 제공: Mark Schonbeck, Virginia Association for Biological Farming.


    그림 4. 이렇게 토끼풀이 자라 짙은 그림자를 드리우고, 땅에 도달하는 빛의 질을 변화시켜 대부분의 한해살이 풀들의 씨앗에서 싹이 트지 않도록 한다. 몇몇 현장실험에서는 붉은토끼풀을 1년 이상 돌려짓기한 농경지에서 한해살이 풀의 개체수가 감소했다고 보고되었다.  한해살이 풀이 자라서 풀씨의 종자은행이 다시 채워지는 일이 거의 없거나 전혀 이루어지지 않으며, 풀씨의 숫자가 씨앗의 포식, 생리학적 노화, 부패 등을 통해 감소한다. 사진 제공: Mark Schonbeck, Virginia Association for Biological Farming.


    토양 미생물 군집에 미치는 영향

    각각의 식물 종은 그 뿌리를 통해 탄수화물과 아미노산, 유기산 및 여타 "미생물의 먹이"를 포함한 물질들의 독특한 혼합물만이 아니라, 특정한 타감물질 세트를 방출한다. 이러한 생화학적 혼합물은 식물의 근권(식물 뿌리에 바로 인접한 토양)에 특정한 미생물상(균류, 박테리아, 원생동물 및 기타 미생물의 집단)을 끌어오거나 지원한다. 그것이 적은 토양에서는 미생물상이 불어나도록 영향을 미친다. 한 식물 종에 의해 길러진 미생물들은 다른 식물 종을 돕거나 방해하며, 또는 아프게 할 수도 있다.

    특정한 풀에만 유해한 미생물을 보유하는 넓게 퍼지는 뿌리를 지니고 확 퍼지는 덮개작물은 해당 풀을 잘 통제할 수 있다. 예를 들어, 대부분의 곡식 및 콩과의 덮개작물은 뿌리와 공생하며 그들의 성장을 돕는 균근균의 좋은 숙주이다. 명아주, 방동사니, 쇠비름 등을 포함하는 몇몇 주요 풀과 마디풀과의 풀 들은 균근의 혜택을 받는 숙주가 아니며, 오히려 균근균이 뿌리에 침입하면 활력이 감소할 수 있다(Francis and Read, 1995; Muthukumar et al., 1997). 몇몇 연구자들은 풀을 관리하는 도구로 균근균의 가능성을 탐구하기 시작했다(Jordan et al., 2000; Vatovec et al., 2005).

    식물 뿌리의 삼출물과 식물-미생물의 상호작용은 다른 식물에게도 영향을 주면서 토양 전체에서 특정한 종이나 부류의 미생물에게도 영향을 줄 수 있다. 예를 들어, 십자화과의 작물과 풀(십자화과 작물, 야생 갓 등)이 방출하는 글루코시놀레이트와 이소티아시아네이트는 몇몇 병원균을 포함하여 토양의 균류를 억제할 수 있다(Haramoto and Gallandt, 2004). 십자화과와 기타 균근의 비숙주 식물은 균근에 직접적인 독성은 없지만, 대부분의 콩과식물 같은 강력한 숙주 종을 재배한 이후 토양에서 많이 발견되는 활동성 균근균을 지원하지는 않는다.  

    작물-풀-토양-미생물의 상호작용은 유기적 풀 관리에 대한 최첨단 연구 중 하나이다. 과학자들은 널리 활용되는 덮개작물의 뿌리 영역에서 번성하는 특정한 미생물의 종이나 상을 찾고 있다. 작물은 위협하지 않지만, 주요한 풀을 공격하거나 억제하는 것이라면 금상첨화이다. 이러한 관계는 복잡다단하여 실용적인 프로그램을 개발하려면 몇 년에서 몇십 년이 걸릴 수도 있다.


    덮개의 효과

    극단적인 기온이나 베거나 말아 버려서 덮개작물이 죽을 때, 지포면에 덮개로 잔류물을 놔두면 때로는 지속적으로 풀의 성장을 방해하기도 한다. 지표면에 그늘을 지게 해 시원하게 유지하고, 토양의 일교차를 줄임으로써 이러한 덮개는 싹이 트는 풀의 씨앗 숫자를 줄인다. 작은 씨앗의 넓은 잎을 지닌 풀들은 5-7cm 두께의 덮개층으로 싹이 트는 걸 효과적으로 가로막는다.큰 씨앗의 넓은 잎을 지닌 풀이나 뿌리줄기와 덩이줄기 들은 싹이 터서 자라기는 하지만, 두터운 덮개작물의 잔류물 때문에 성장이 지연될 수 있다. 

    덮개의 효과는 앞에서 언급했듯이, 부식되는 잔류물에서 방출되는 타감물질에 의해 배가될 수 있다. 또한 유기농업의 덮개는 딱정벌레와 기타 풀 씨앗의 포식자들만이 아니라 풀 씨앗을 공격하고 죽일 수 있는 미생물들에게 서식처를 제공한다. 

    덮개작물 잔류물로 풀을 억제하는 효과는 덮개작물의 바이오매스와 질소 함유량, 계절, 기후와 토양의 조건에 따라 하찬은 수준에서 매우 효과적인 수준까지, 또 2주에서 몇 달까지 매우 다양하게 나타난다(그림 5). 따뜻하고 습한 기후와 활발한 토양생물들의 활동성이 결합되어 덮개작물의 잔류물이 빠르게 분해되어 그들의 타감물질이 방출되면, 풀을 통제하는 기간이 짧아진다. 짚이 많고 질소 함량이 낮은 잔류물은 수분이 많고 질소 함량이 높은 잔류물보다 오래간다. 건조한 기후에서 콩과의 덮개작물이 풀을 억제하는 효과는 꽤 좋을 수 있다(Hutchinson and McGiffen, 2000).


    그림 5. 여기의 호밀-털갈퀴덩굴 덮개작물의 덮개는 풀의 성장을 늦추어 브로콜리가 풀과의 경쟁에서 유리하도록 환경을 조성했다. 덮개는 효과적으로 대부분의 한해살이 풀을 가로막았고, 개밀이 간간이 뚫고 나오기 시작했다. 덮개작물을 베고, 이 사진을 찍기 7주 전에 브로콜리를 옮겨심었다. 사진 제공: Mark Schonbeck, Virginia Association for Biological Farming.


    풋거름의 효과

    덮개작물을 풋거름으로 흙에 갈아엎는 건 미생물의 활동을 촉진시켜 일시적으로 대부분의 풀과 작물이 살기 좋지 않은 토양으로 만들어 버릴 수 있다.  경운 자체는 풀씨의 발아를 자극하지만, 잔류물을 혼입해 풀의 싹을 공격하는 균류와 기타 병원균을 촉진시킬 수 있다(Kumar et al., 2008). 잔류물이 질소에 비해 탄소가 풍부(탄질비 30이나 그 이상)하면, 토양의 미생물들이 탄소가 풍부한 유기물을 소비하면서 식물이 활용할 토양의 질소를 끌어가서, 풀이 성장하는 걸 지연시킨다. 이러한 효과-특정 덮개작물, 특히 무와 기타 십자화과 같이 짧고 굵게 타감물질을 훅 방출하는 것과 결합하여- 가 풀이 많은 밭을 정리하는 데 도움이 될 수 있다.

    한편 콩과이거나 어리거나 수분이 많은 풋거름(그림 6)은 질소와 기타 양분을 풍부히 제공하여 풀이 싹트고 성장하는 걸 마구촉진해서, 덮개작물로 초기에 풀을 억제하는 효과를 떨어뜨리게 된다. 


    그림 6. 농부가 겨울철 덮개작물인 털갈퀴덩굴을 늦봄에 갈아엎고 있는 모습.수분이 많고 질소 함량이 높은 콩과의 덮개작물은 빠르게 분해되어, 이후 1-2주 안에 작물을 심어야 한다. 이런 농법의 단점은 풀이 번식할 수 있는 비옥한 장소를 제공할 수도 있다는 점이다. 사진제공: Mark Schonbeck, Virginia Association for Biological Farming.

    환금작물도 풋거름 효과에 영향을 받을 수 있다. 채소는 풋거름을 토양에 넣은 뒤 미생물이 폭발적으로 활동하는 동안 심으면 안 된다. 채소에 풋거름이 악영향을 미치지 않으며, 채소가 처음 자리를 잡기 전 일시적으로 풀들을 억제하는 효과를 얻을 수 있도록 시기를 잘 정해야 한다. 


    이 글은 유기농 채소 재배의 생태적 풀 관리를 위한 12단계의 일부이다. 풀 관리를 위해 덮개작물을 활용하는 일에 대한 더 많은 정보는 아래를 참조하라. 


    참조 및 인용

    • Al-Khatib, K., C. Libbye, and R. Boydston. 1997. Weed suppression with Brassica green manure crops in green pea. Weed Science 45: 439–445. (Available online at: http://www.jstor.org/stable/4046046) (verified 23 March 2010).
    • Boydston, R. A., and A. Hang. 1995. Rapeseed (Brassica napus) green manure suppresses weeds in potato (Solanum tuberosum). Weed Technology 9: 669–675. (Available online at: http://www.jstor.org/stable/3988342) (verified 23 March 2010).
    • Francis, R., and D. J. Read. 1995. Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure. Canadian Journal of Botany 73 Suppl: S1301–S1309.
    • Grubinger, V. 2004. Farmers and their innovative cover cropping techniques [VHS tape/DVD]. University of Vermont Extension, Burlington, VT.
    • Gruver, J., R.R. Weil, C. White, Y. Lawley. Radishes-A New Cover Crop for Organic Farming Systems [Online]. eOrganic article. Available at http://www.extension.org/pages/64400.
    • Haramoto, E. R., and E. R. Gallandt. 2004. Brassica cover cropping for weed management: A review. Renewable Agriculture and Food Systems 19: 187–198. (Available online at: http://dx.doi.org/10.1079/RAF200490) (verified 23 March 2010).
    • Hutchinson, C. M., and M. E. McGiffen, Jr. 2000. Cowpea cover crop mulch for weed control in desert pepper production. HortScience 35: 196–198.
    • Jordan, N. R., J. Zhang, and S. Huerd. 2000. Arbuscular-mycorrhizal fungi: Potential roles in weed management. Weed Research 40: 397–400. (Available online at: http://dx.doi.org/10.1046/j.1365-3180.2000.00207.x) (verified 23 March 2010).
    • Kumar, V., D. C. Brainard, and R. R. Bellinder. 2008. Suppression of Powell amaranth (Amaranthus powellii), shepherd’s-purse (Capsella bursa-pastoris) and corn chamomile (Anthemis arvensis) by buckwheat residues: Role of nitrogen and fungal pathogens. Weed Science 56: 271–280. (Available online at: http://dx.doi.org/10.1614/WS-07-106.1) (verified 23 March 2010).
    • Lawley, Y.E., J. R. Teasdale and R.R. Weil. 2012. The mechanism for weed suppression by a forage radish cover crop. Agronomy Journal. 104:205-214. Available online at https://www.enst.umd.edu/sites/default/files/_docs/Lawley%20et%20al%2020....
    • Muthukumar, T., K. Udaiyan, A. Karthikeyan, and S. Manian. 1997. Influence of native endomycorrhizae, soil flooding and nurse plant on mycorrhizal status and growth of purple nutsedge (Cyperus rotundus L.). Agriculture, Ecosystems and Environment 61: 51–58. (Available online at: http://dx.doi.org/10.1016/S0167-8809(96)01073-0) (verified 23 March 2010).
    • Putnam, A. R., and J. DeFrank. 1983. Use of phytotoxic plant residues for selective weed control. Crop Protection 2: 173–181. (Available online at: http://dx.doi.org/10.1016/0261-2194(83)90042-X) (verified 23 March 2010).
    • Putnam, A. R., J. DeFrank, and J. P. Barnes. 1983. Exploitation of allelopathy for weed control in annual and perennial cropping systems. Journal of Chemical Ecology 9: 1001–1010. (Available online at: http://dx.doi.org/10.1007/BF00982207) (verified 23 March 2010).
    • Putnam, A. R., and C-S. Tang (ed.) 1986. The science of allelopathy. John Wiley & Sons, New York, NY.
    • Rice, E. L. 1995. Biological control of weeds and plant diseases: Advances in applied allelopathy. University of Oklahoma Press, Norman, OK.
    • Schonbeck, M. 2007. Evaluation of frost-killed cover crops for organic spring vegetable production: A supplemental report on experiments conducted July 2006 through June 2007. Submitted to the Organic Farming Research Foundation in October 2007.
    • Smeda, R. J., and S. C. Weller. 1996. Potential of rye (Secale cereale) for weed management in transplant tomatoes (Lycopersicon esculentum). Weed Science 44: 596–602. (Available online at: http://www.jstor.org/stable/4045642) (verified 23 March 2010).
    • Teasdale, J. R., and C.S.T. Daughtry. 1993. Weed suppression by live and desiccated hairy vetch (Vicia villosa). Weed Science 41: 207–212. (Available online at: http://www.jstor.org/stable/4045306) (verified 23 March 2010).
    • Vatovec, C., N. Jordan, and S. Huerd. 2005. Responsiveness of certain agronomic weed species to arbuscular mycorrhizal fungi. Renewable Agriculture and Food systems 20: 181–189. (Available online at: http://dx.doi.org/10.1079/RAF2005115) (verified 23 March 2010).



    728x90

    '농담 > 농법' 카테고리의 다른 글

    바이오다이나믹 농법은 무엇인가?  (0) 2017.04.24
    풀 달력을 읽자  (0) 2017.04.21
    감자에 대한 정보  (0) 2017.04.20
    고랭지밭의 흙을 지켜라  (0) 2017.04.18
    구한말 벼농사 관련 풍속화  (0) 2017.04.16
    728x90

    요약

    유기농 농민은 풀이 전래되어 번식하는 걸 최우선적으로 예방하고자 한다. 관리법은 작물 재배에 경제적 손실을 초래하지 않거나 품질을 해치지 않는 수준에서 풀의 개체수를 유지하는 걸 목표로 한다. 모든 풀을 없애자는 것이 목표가 아니다. 풀이 농장에서 하는 일도 있기 때문이다. 예를 들어, 풀은 토양의 침식을 줄이는 덮개를 제공한다. 또 농경지에서 생물다양성의 대부분이 풀의 존재에서 비롯된다. 그들은 유익한 생물방제 곤충과 미코리자균에게 서식처를 제공한다. 풀은 꽃가루와 꿀을 제공하여 생물방제 곤충이 그들의 개체군을 유지할 수 있게 하기에, 해충을 통제하는 데 유용한 도구로 활용된다. 

    설명

    그러나 풀은 작물의 환경을 부정적인 방식으로 변화시킬 수도 있다. 예를 들어, 작물 사이의 빛과 공기 순환이 줄어든다. 이런 어둡고 습한 환경은 식물에 질병이 퍼지고 감염되기에 좋은 조건이다. 

    우리가 지금까지 여러 번 보았듯이, 유기농업의 기본 작동원리는 문제를 해결하기보다는 문제를 예방하는 데 있다. 이는 풀을 관리할 때도 똑같이 적용된다. 유기농업의 좋은 풀 관리법에는 잘못된 시기와 장소에서 풀이 자라 작물 재배에 심각한 문제가 되는 것을 방해하는 환경을 조성하는 일이 포함된다. 풀과 경쟁하는 일이 재배기간 내내 작물에 해가 되는 건 아니다. 작물이 풀과 경쟁할 때 가장 민감한 단계는 초기의 성장 단계이다. 어린 식물은 취약하고, 잘 자라려면 이상적인 양분과 빛, 물의 공급에 크게 의존한다. 이 단계에서풀과 경쟁해야 한다면 작물이 약해질 수 있고, 그로 인해 병충해의 감염에 더 취약해질 수 있다.

    이후의 재배 기간에는 풀과의 경쟁이 덜 해롭다. 그러나 일부 풀은 수확 문제를 야기하고, 작물의 수확량을 감소시킬 수 있다. 그러므로 작물의 가장 중요한 성장기 이후에도 풀을 완전히 무시해서는 안 되지만, 일반적으로 덜 중요해지기는 하다. 

    이러한 고려사항들은 풀을 관리하는 조치의 선택과 시기에 영향을 준다. 일반적으로 그러한 조치들은 작물 재배의 경제적 손실을 초래하지 않거나 품질을 해치지 않는 수준에서 풀의 개체수를 유지하는 것을 목표로 한다. 


    1.  예방법

    몇 가지 예방 조치를 동시에 적용할 수 있다. 여러 방법의 중요성과 효과는 풀의 종류와 환경 조건에 크게 좌우된다. 그러나 일부 방법은 광범위한 종류위 풀에 매우 효과적이기에 정기적으로 활용된다:

    • 작물과 품종의 선택: 넓은 잎을 가진 키가 큰 작물과 품종은 좁은 입을 가진 키가 작은 품종보다는 늦게 발생하는 풀과 더 잘 경쟁할 것이다. 어떤 품종은 풀을 억제하고 이기며, 어떤 것은 풀을 견딜 것이다. 예를 들어, 아프리카의 여러 국가에서는 마녀풀(Striga) 저항성 옥수수와 동부 품종이 있어, 다른 품종은 그 풀에 영향을 받는 똑같은 수준에서도 더 나은 결과가 나온다.


    숙주 식물에 큰 피해를 입히는 Striga


    • 덮개: 덮개로 인해 풀이 자리기에 충분한 빛을 받기 어렵고, 그 층을 뚫고 나오지 못할 수도 있다. 천천히 분해되는 건조하고 딱딱한 물질은 신선한 덮개 재료보다 효과가 오래간다.  
    • 살아 있는 덮개작물: 덮개는 빛과 양분, 물에 대해 풀과 성공적으로 경쟁하기에, 자원 경쟁을 통해 풀이 번식하는 걸 예방할 수 있다. 일반적으로 사용되는 덮개작물은 콩과식물로, 풀을 억제하면서 토양 비옥도를 향상시킨다. 예를 들어, 옥수수 사이에서 자라는 도둑놈의갈고리(Desmodium uncinatum)나 은색 잎의 식물은 striga 풀이 자라는 걸 줄이는 동시에 질소를 고정시킨다(참조 How to control Striga and stemborer in maize).

    • 돌려짓기: 작물의 돌려짓기는 풀의 씨앗과 뿌리를 규제하는 가장 효율적인 방법이다. 작물의 조건이 바뀌면 풀의 생활조건을 방해하여 그것이 성장하고 퍼지는 걸 억제한다. 
    • 사이짓기: 주요 작물 종의 줄 사이에 빠르게 성장하여 풀을 억제하는 종(더 매끄러운 작물 또는 살아 있는 덮개)을 사이짓기하는 것이 풀을 통제하는 데 효과적이다. 아프리카에서 활용하는 것으로 알려진 여러 사례가 있다. 예를 들어, 카사바에 사이짓기로 동부와 에구시egusi 멜론이나 호박을 심어 풀의 발생을 줄인다.  


    풀을 관리하는 방법


    • 파종 시기와 밀도: 재배 환경을 최적화하는 건 작물의 성장 및 풀과 경쟁하는 능력을 최적화시킨다. 적절한 작물 간격은 풀의 성장하는 데 최소의 공간을 주어 작물이 풀과 경쟁하는 걸 최소화한다. 이는 풀이 자라는 걸 효과적으로 제한할 것이다. 이런 접근법을 적용하기 위해서는 풀이 발생하는 시기를 잘 알아야 한다. 가능하다면, 지역의 풀 달력이 도움이 될 수 있다. 적절한 시기와 효과를 지닌 목표형 방식으로 풀을 관리하는 데 활용될 것이다. 
    • 균형 잡힌 거름주기: 풀보다 작물이 더 잘 크도록 촉진하여 작물의 성장을 지원할 수 있다. 
    • 토양 경운 방법은 풀의 구성뿐만 아니라, 풀의 전체적 압박에도 영향을 줄 수 있다. 예를 들어, 최소한의 경운 체계는 풀의 압박을 증가시킬 수 있다. 풀의 씨앗은 토양의 경운과 작물의 파종 사이에 발아할 수 있기 때문에, 파종하기 전에 풀을 제거하면 잡초의 압박을 줄일 수 있다. 건조한 날씨 조건에서는 메마른 흙의 표면에 풀의 뿌리를 노출시켜 말려 죽일 수 있다. 
    • 방목: 커피, 망고, 아보카도, 코코아 같은 여러해살이 작물에서, 풀이 만연하는 걸 줄이고자 양과 염소를 활용하는 게 일반적이 되고 있다. 소의 경우, 소가 목초를 선호하기에 넓은 잎의 풀이 우세하는 경향이 있다. 그래서 이를 해결하기 위하여, 넓은 잎을 선호하는 양과 염소를 돌려가며 투입해야 한다.


    풀을 통제하는 방목


    • 풀의 확산: 씨앗이 확산되기 전에 제거함으로써 풀이 퍼지는 걸 막는다. 
    • 씨앗 발생: 도구나 동물을 통해 풀의 씨앗이 농지에 도입되는 걸 피함으로써 풀이 수정되는 걸 방지한다. 그리고 풀씨가 없는 씨앗만 사용한다.


    어떻게 풀을 막는가?


    2.  풀의 생물학적 통제

    토양 매개 균류인 Fusarium oxysporum(부르키나파소, 말리, 니제르에서의 여러 균주)은 여러 식량작물에서 발생하는 마녀풀(Striga hermonthica and S. asiatica)을 줄이는 데 매우 효과적이어서, 과학적 실험에서 수확량이 증가한다는 것이 밝혀졌다. 수단과 가나에서 발견된 다른 Fusarium (Fusarium nygamai, F. oxysporum and F. solani)도 매우 효과적이다. 이 미생물제초제는 아프리카의 여러 나라에서 공식화되어 등록되고 있다.  

    마녀풀(Striga spp.) 씨앗의 발아를 억제하거나 실질적으로 그것을 파괴할 수 있는 Rhizobacteria는 쉽고 값싸게 씨앗의 접종제로 활용될 수 있어 특히 유망한 생물학적 조절제이다. Pseudomonas fluorescens putida 균주는 Striga hermonthica 씨앗의 발아를 상당히 억제한다. 그러나 현재 생물방제 제품을 이용할 수는 없다. 

     

    3.  기계적 통제

    필요한 예방조치로 풀의 밀도를 줄일 수는 있지만, 재배를 시작할 때인 작물에게 중요한 기간 동안에는 그걸로 충분하지 않다. 그러므로 기계적 방법이 풀을 관리하는 데 여전히 중요한 수단이다.


    기계적 풀 통제. 땅을 준비하면서 풀을 갈아엎거나, 괭이로 작물 사이를 긁어주거나, 덮개를 덮은 밭에 난 풀을 손으로 제거한다.



    • 손 김매기가 아마 가장 중요한 한 방법이다. 매우 노동집약적이어서, 농지에서 가능한 만큼 풀의 밀도를 줄이는 것이 나중에 할일이 줄기에 그걸 목표로 삼아야 한다. 풀을 파고, 자르고, 뿌리를 뽑는 여러 도구가 있다. 손, 소 쟁기질, 트랙터 쟁기질 등이다. 올바른 도구를 사용하면 작업 능률이 크게 향상될 수 있다. 김매기는 꽃이 피어 씨앗이 맺기 전에 끝내야 한다. 
    • 화염 김매기는 또 다른 선택지이다: 식물을 100°C 이상으로 잠깐 가열한다. 이로써 잎에 있는 단백질이 응고되고, 세포벽이 파열된다. 결과적으로 풀이 말라 죽는다. 효과적인 방법이긴 하지만, 많은 양의 연료를 소비하고 장비가 필요하기 때문에 비용이 많이든다. 또 뿌리로 번식하는 풀에는 효과적이지 않다. 

     

    지금까지 유기농업 훈련 안내서의 일부였다. 더 많은 읽을거리는 다음의 주제별로 이용할 수 있다. :

    1. 유기농업의 소개
    2. 유기농업으로 전환하기 위한 고려사항
    3. 유기농업으로 전환하는 단계
    4. 유기농업의 덮개 농법
    5. 유기농업의 물 관리
    6. 유기농업의 작부 계확과 관리
    7. 유기농업의 양분 관리
    8. 유기농업의 병해충 관리
    9. 유기농업의 풀 관리
    10. 유기농업의 토양 경운
    11. Plant Propagation in Organic Agriculture
    12. Animal Husbandry in Organic Agriculture

    All these techniques have been compiled by Ilka Gomez thanks to the collaboration of IFOAM, FiBL and Nadia Scialabba (Natural Resources Officer - FAO).

    The full manual can be accessed here: Training Manual on Organic Agriculture

     
     

    더 읽을거리

    FiBL. 2011. African Organic Agriculture Training Manual – Pest, Disease and Weeds. Version 1.0 June 2011. Edited by Gilles Weidmann and Lukas Kilcher. Research Institute of Organic Agriculture FiBL, Frick

    IFOAM. 2003. Training Manual for Organic Agriculture in the Tropics. Edited by Frank Eyhorn, Marlene Heeb, Gilles Weidmann, p 186-188, http://www.ifoam.bio/

    작성일

    Fri, 15/05/2015 - 14:58 

    출처

    IFOAM - Organics International

    ‘IFOAM - Organics International’ has been leading, uniting and assisting the Organic Movement since 1972. 

    As the only global organic umbrella organization, we are committed to advocating Organic Agriculture as a viable solution for many of the world’s pressing problems. With around 815 affiliates in over 120 countries, we campaign for the greater uptake of Organic Agriculture by proving its effectiveness in nourishing the world, preserving biodiversity, and fighting climate change. We also offer training courses, provide services to standard owners, certifiers, operators, and realize organic programs.


    728x90

    '농담 > 농법' 카테고리의 다른 글

    유기농업의 토양 경운  (0) 2017.03.25
    유기농업의 작부 계획과 관리  (0) 2017.03.24
    유기농업의 덮개 농법  (0) 2017.03.22
    유기농업으로 전환하기 위한 고려사항  (0) 2017.03.21
    유기농업의 소개  (0) 2017.03.20
    728x90

    대부분의 작물이 C3 광합성을 하는 식물이고, 대부분의 풀들이 C4 광합성을 하는 식물이라고 한다.

    이 둘의 결정적 차이는 쉽게 이야기하자면(자세한 내용은 나도 잘 모르니 여기를 참조하시길... https://ko.wikipedia.org/wiki/C4_%EC%8B%9D%EB%AC%BC), 더 척박한 환경에서도 잘 자라느냐 아니냐라는 점이다. 그래서 풀이 더 어려운 조건에서도 작물보다 훨씬 더 잘 자란다는 것이다.


    그런데 이런 프로젝트가 국제벼연구소에서 이루어지고 있다. 

    이름하여 "C4 벼" 프로젝트이다.

    아래 링크로 들어가서 한번 보시길 바란다. 정말 흥미로운 일이다.


    http://c4rice.irri.org/ 

    728x90

    + Recent posts