728x90
내가 궁금하던 질문에 대한 실마리를 제공하고 있는 기사.

만일 내가 뿌린 씨를 내가 거둘 수 없다면…


[토요판] 최정규의 우울하지 않은 과학
(4) 기술이냐 제도냐

고구마의 도입으로 오랫동안 유지되던 평등주의적 질서가 깨지는 과정을 보여주는 뉴기니 고산지대 엥가 부족의 사례는 기술이 사회제도를 변화시키는 동력이라는 낯익은 가설을 뒷받침하는 사례라 할 만하다. 사진은 엥가 부족 모습. 위키피디아

농경의 시작은 인류의 역사에서 혁명적인 일이었음에 분명하다. 어떤 이들은 초기에는 어땠는지 몰라도 농업이 결국에는 잉여를 가져다주었고 인구를 증가시켰으며, 거대 국가와 문명의 토대가 되었다고 말했다. 다른 이들은 농업의 시작이 불평등과 생태계 파괴로의 문을 연 계기였다고 개탄하기도 했다. 농업은 누구의 눈에는 인류의 번영을 위한 축복의 계기였고, 또 다른 사람들의 눈에는 저주의 시작이었다. 하지만 농업을 바라보는 시각은 서로 달라도, 농경의 시작이 인류 역사에서 일어난 가장 중요한 혁명적 사건 중 하나라는 점에는 아마도 모두가 동의할 것이다. 인류는 왜, 어떻게 농부가 되었을까?

농업은 지금으로부터 약 1만1000년 전에 처음 등장했다고 알려져 있다. 이 시기는 지구상의 마지막 빙하기가 막 물러갔을 때이다. 농업의 최초 흔적은 현재 중동 지방(시리아·레바논·요르단·이스라엘 지역)과 터키 남부 지역에서 발견됐다. 이 지역은 동쪽으로는 페르시아만으로 이어지는 유프라테스 강과 티그리스 강 주변에서 시작하여 서쪽으로는 지중해 동부 요르단 강 유역을 아우르는데, 그 모양이 초승달을 닮았다 해서 “비옥한 초승달”이라고 불린다. 이곳에서 밀과 보리를 경작하는 농부들이 출현했다.


마르크스, “기계방아가 자본주의 낳았다”

농경의 등장 전후로 큰 변화들이 있었다. 우선 이 시기는 인류가 여기저기 돌아다니지 않고 정착해 살기 시작한 거주형태의 변화와 맞물려 있다. 또한 무엇보다도 사적 소유권이 자리잡게 된 시점도 농업의 등장 시점과 어느 정도 일치한다. 그래서 농업과 정착, 그리고 사적 소유 이 세 가지는 하나의 묶음처럼 여겨지기도 한다. 시점에 따라 혹은 장소에 따라 이 선후 관계가 달리 나타나기도 하지만, 대체로 큰 틀에서 보면 이 셋은 서로 보완적인 관계로 받아들여지기 때문이다. 인류 사회의 불평등의 씨앗도 이 세 가지와 연관이 있을 것이라는 데 많은 인류학자와 고고학자들이 동의하고 있다.

농업이 생산성을 증대시켰다고 보면 모든 게 간단히 설명된다. 다음과 같은 시나리오를 생각해보자. 인류가 농업이라는 생산 방법을 채택하게 됨에 따라 인류의 생산력은 증대했고, 비로소 인류는 이른바 ‘잉여’를 갖게 되었다. 겨우 먹고사는 데 그쳤던 이전과 달리 잉여가 발생했고 사적 소유라는 게 생겼고 이로부터 일 안 하고 남이 일한 것을 착취해서 살아가는 지배계층이 등장할 수 있었다. 요약하자면, 새로운 생산기술이 나타나 생산력을 증대시키고, 그에 따라 새로운 경제적 (지배) 관계가 발생하게 된다는 가설하에서 만들어진 시나리오이다. 기술이 사회제도를 변화시키는 주된 동력이라는 관념은 매우 익숙한 관념이다. 카를 마르크스는 <철학의 빈곤>에서 손방아(맷돌)가 지주와 농노로 이루어진 봉건제를 낳았고, 기계방아가 자본가와 노동자로 이루어진 자본주의를 낳았다고 말했다.

인류학자들의 연구에서도 이러한 관념에 잘 들어맞는 사례가 자주 등장한다. 심스 올리버는 미국 중부지역 평원에 살던 인디언 부족에 말이 도입되면서 평등했던 관계가 위계적인 관계로 변하게 되는 과정을 추적했다. 그에 따르면 말의 도입은 버팔로 사냥을 수월하게 만들었고, 버팔로의 이동 경로를 따라 부족도 함께 이동하는 거주 패턴을 가능하게 했다. 말이 도입되면서 정착해 생활하던 부족들에 비해 거주지를 옮겨다니며 사냥을 주업으로 삼았던 부족들이 더 강성해졌다. 다른 부족을 습격해서 말을 획득하는 능력이야말로 용맹함의 척도이고 지도력의 척도로 간주되기 시작했다. 말은 부의 축적 수단으로 등장했고, 말을 얼마나 가지고 있는가에 따라 부와 권력이 결정됐다.

또 다른 예로 폴리 위즈너는 뉴기니 고산지대 엥가 부족을 연구하면서, 오랫동안 유지되어 오던 평등주의적 질서가 고구마의 도입으로 인해 균열이 생기면서 불평등하게 변하는 과정을 보여준 바 있다. 이 연구에 따르면, 고구마 경작이 가져온 높은 생산성이 사회적 변화의 중심에 있었다.


하지만 간명해 보이는 이 가설은 몇몇 사례에서는 잘 들어맞을지 몰라도, 적어도 농경의 출발을 설명하기에는 힘든 것 같다. 인류는 농부가 되기 훨씬 전부터 야생 상태에서 곡물이 어떻게 자라는지에 대한 상당한 지식을 갖고 있었다는 데 많은 이들이 동의한다. 다만 본격적으로 농부가 되겠다는 선택을 하지 않고 있었을 뿐. 농부로의 전환을 꺼렸던 이유는 농업이 처음 등장했을 당시, 그 대체 방식으로서의 수렵 및 채취에 비해 생산성이 높지 않았기 때문이다. 고고인류학자들의 연구를 보면, 초기 농업은 수렵·채취 방식에 비해 훨씬 더 고된 작업이었는데도, 같은 시간을 일했을 때 얻어지는 칼로리의 양은 높지 않았던 것 같다. 사냥을 하고 열매를 따 먹던 시절에 비하면, 허리 부러지도록 일하고 얻는 영양소도 다양하지 못했다.

페르시아만에서 요르단강 유역에 이르는 ‘비옥한 초승달’ 지역 이외에도 농경이 독자적으로 등장한 곳은 꽤 있다. 하지만 이들 지역에서도 ‘자발적으로’ 농업으로 전환한 사례가 거의 없음을 보여주는 연구가 잇따르고 있다. 사진은 아프리카 나이지리아의 농사 현장 모습. 위키피디아


‘제도의 실패’를 보여주는 바텍 사례

카를레스 보익스와 프랜시스 로젠블루스는 고고학자들의 유골 분석 결과를 요약하면서, 초기 농부들의 신장이 수렵·채취를 기반으로 살았던 이들에 비해 작았음을, 그리고 영양상태가 안 좋았음을 드러내주는 흔적들을 보았다. 빈혈 때문인 것으로 추정되는, 뼈에 나타난 병변현상이나 골 질량 손실의 증거들, 그리고 치아를 둘러싸고 있는 에나멜의 부족 등이 그 증거였다. 샌타페이연구소의 새뮤얼 볼스는 현존하는 수렵·채취 부족들과 손도구를 이용해 농업을 하고 있는(그래서 초기 농부들과 유사하다고 여겨지는) 농부들의 노동생산성을 계산해 보았다. 한 시간의 노동으로 얻어낼 수 있는 열량으로 비교해본 결과, 이들 농부들의 생산성은 수렵·채취 부족민들의 생산성의 63%밖에 되지 않았다.

물론 초기 농업의 경우, 노동생산성에서는 수렵·채취에 비해 떨어졌더라도 토지를 집약적으로 사용했을 터이니 토지 단위 면적당 생산성은 더 높았을 것이다. 하지만 상대적으로 풍부했던 토지를 광범위하게 이용하는 기술(수렵·채취)을 포기하고 토지 절약적인 기술(농업)을 채택한 것은 적어도 경제학적으로는 설명되지 않는다. 이러한 증거들을 토대로, 잭 할런은 1992년 저서 <작물과 인간>에서 다음과 같은 질문을 던졌다. “왜 농업을 도입했을까? 주당 20시간만 사냥하면 나머지 시간을 즐길 수 있는데도, 굳이 태양볕 아래서 고생해야 했던 이유가 뭘까? 영양소도 풍부하지 못하고 또 공급도 안정적이지 않았던 작물들을 얻기 위해 그렇게 열심히 일해야 했던 이유가 무엇일까? 농업이 도입된 이래 기아, 질병, 전염병이 등장했고, 밀집된 공간에 사느라 생활환경도 극히 안 좋아졌을 텐데도?” 성경은 하나님이 자신과의 약속을 어긴 아담에게 “죽도록 고생해야 먹고살리라”는 벌을 내리면서 “들에서 나는 곡식을 먹어야 할 터인데, 땅은 가시덤불과 엉겅퀴를 내리라 (…) 이마에 땀을 흘려야 낟알을 얻어먹으리라”고 말한 것으로 전하고 있다. 농사란 그만큼 고된 일이었을 거란 증거다.

지금까지 발견된 바에 따르면 지구상에서 농경이 독자적으로 등장했던 곳은 비옥한 초승달 지역 외에도 중국, 멕시코, 북부 페루, 고지대 뉴기니, 서부 아프리카 사헬 지역, 북미 동부 등 7개 지역 정도이다. 그 외 지역의 농경은 다른 곳으로부터의 정복이나 교류 혹은 농부들의 이주의 결과라는 말이다. 유사한 기후조건과 토양조건을 가졌더라도, 야생 작물의 성장 과정을 지켜보면서 혹은 화전 농법을 사용하면서 농사에 대한 충분한 지식을 가졌더라도, 실제로 ‘자발적으로’ 농부로 전환한 부족들은 그렇게 많지 않았을 것이라는 얘기다. 예를 들어, 1770년 오스트레일리아 북단 케이프 요크에 도착했던 제임스 쿡 선장은 그 지역이 토레스 해협 건너 뉴기니와 다르지 않아 보이는데도, 뉴기니에서와 달리 오스트레일리아 대륙 북단에 거주하던 원주민들이 농사를 짓지 않는다는 사실을 보고 의아해했다고 쓰고 있다. 

따라서 농경은 높은 생산성 때문에 자연스레 시작된 것은 아니었고, 어쩔 수 없는 선택이었다고 보는 쪽으로 견해가 모아지는 듯하다. 그리고 어쩔 수 없는 선택을 하게끔 만들어 준 (선행)요인으로서 환경과 인구가 아니라, 규범과 제도에 주목해야 한다는 주장도 있다. 농경이란 기술적 지식만으로 일어날 수 있는 것이 아니라(이미 지식은 충분했다) 제도적 조건이 갖춰질 때 비로소 시작될 수 있었을 것이라는 주장이다.

오래전 인류학자인 커크 엔디컷은 말레이시아 수렵·채취 부족인 바텍 원주민들 사이에서 벌어진 해프닝을 보고한 적이 있다. 이야기인즉슨, 바텍 주민 두 사람이 농사짓는 법을 전수받아 볍씨를 뿌리고 농사를 시작했는데, 추수가 가까워질 즈음 다른 마을 주민들이 와서 맘대로 곡식을 추수해 가더라는 것이다. 벼농사를 지어보겠다던 이 두 사람은 몇 년 거푸 동일한 일이 생기자 결국 농사짓기를 포기하고 마을을 떠났다고 한다. 이는 농경의 도입 실패는 기술의 실패가 아니라 제도의 실패였음을 보여주는 사례다. 바텍 원주민들은 자연자원은 누구도 소유하지 못하며, 가족의 필요를 넘어서는 잉여는 다른 이와 나눈다는 규범을 갖고 있었다고 한다. 따라서 마을 주민들은 두 사람의 벼도 마찬가지로 간주했던 것이다.

농사란 추수 때까지 오랜 시간을 기다려야 하고, 그 동안 많은 노력을 기울여야 한다. 농사란 당시 기술로는 손을 엄청 필요로 했기에 일년 내내 노력을 기울여도 좋은 결과가 나올지 확실하지 않은 일이었을 것이다. 하지만 더 심한 불확실성은 제도적 요인이었을지도 모른다. 내가 땀 흘려 만들어낸 생산물이 내게 돌아오리라는 보장이 없으면 1년 내내 쏟아부은 노력이 물거품이 되어 버린다. 요컨대, 인류가 농경을 시작하려면 바로 그런 점에서 확실한 보장이 필요하지 않았을까? 농사가 제대로 될지 불확실성은 어쩔 수 없다 치더라도, 최소한 내가 뿌린 씨는 내가 거둘 수 있다는.


사적 소유가 농경에 선행했다

터키 서부지역에서 클라우스 슈미트가 발굴한 유적지인 괴베클리 테페와, 현재의 시리아 부근에서 앤드루 무어가 발굴한 아부 후레이라 유적지는 인류가 농부가 되는 이른바 ‘제도적’ 경로를 보여주고 있다. 이 둘은 농경이 시작되기 전부터 오랫동안 정착촌을 이루고 있었던 증거와 함께, 집집마다 야생 곡물을 보관할 식량창고를 갖는 등 상당한 정도의 사적 소유가 갖춰졌음을 보여주는 유적들이다. 경제학자인 대런 아제모을루는 그의 책 <국가는 왜 실패하는가>에서 괴베클리 테페에서 발견된 초기 의식용 건물을 보면서 이 지역에서는 농경이 도입되기 이전부터 불평등이 상당히 진전되었을 것이라는 주장을 내기도 했다. 그리고 불평등하에서 엘리트층이 착취를 손쉽게 하기 위해 저장이 가능한 곡물 생산으로의 이전을 강제했다고까지 주장했다. 이 두 곳에서 발견되는 사적 소유의 흔적들이 얼마나 불평등의 심화를 말해주고 있는지의 여부는 여전히 논란이다. 하지만 적어도 이곳에서는 농경사회로의 전환 이전에 이미 이를 위한 제도적 여건으로서의 사적 소유가 꽤 진전되어 있었음을 말해준다.

새뮤얼 볼스와 필자는 고고학적 증거를 토대로 수리 모형을 짠 후 이를 기초로 컴퓨터 시뮬레이션을 통해 농업과 사적 소유의 진화를 재현해본 적이 있다. 우리의 시뮬레이션 결과는 다음을 보여주고 있었다. (1) 농업의 발생이 1000번 시행에 31번 일어날 정도로 쉽지 않았던 사건이었고, (2) 그 31번의 이행은 모두 사적 소유권과 함께 진화했으며, (3) 사적 소유가 농경에 선행해 농업생산을 이끌더라는 것. 말하자면, 아부 후레이라에서 나타났음직한 모습이었다. 농경의 시작을 둘러싸고 나타나는 여러 사회적 변화는 생산기술과 사회적 제도와 관련한, ‘닭이 먼저인지 달걀이 먼저인지’ 식의 문제이다. 그런 점에서 기술과 제도의 상호작용을 깊이 생각해볼 기회를 준다. 인류학자들은 수렵·채취 사회에서 주로 발견되는 평등적 관계와 공유의 규범이 어떻게 유지되었고, 어떻게 해체되면서 위계와 사적 소유와 불평등으로 이어지는지에 대한 구체적인 사례들을 보여주고 있다. 말하자면 기술은 그대로인데, 규범 등의 제도가 변하고 새로운 제도가 새로운 기술 도입으로의 길을 열 가능성들을 보여주는 사례들이다. 제도의 변화에 대해 좀 더 이해할 수 있을 때, 인류가 농부가 되는 과정도 더 잘 이해할 수 있을 것이다.


728x90
728x90
유전자 분석이 이런 수준에까지 올라왔다.
과거의 유골을 분석하니, 육류와 해산물 소비가 증가하는 것과 함께 곡식과 채소의 소비가 확 줄었다가 농경이 시작되었다는 신석기혁명 즈음하여 그러한 양상이 역전된다는 연구결과이다.




과연 당시에는 무슨 일이 있었던 것일까?
잡아먹을 수 있는 동물과 물고기가 어떤 사건을 계기로 급감했던 것일까? 너무 남획을 했는가?
아니면 농경의 효율성이 사냥을 포기할 정도로 급작스럽게 좋아진 것일까?

무슨 일이 있었는지는 더 많은 증거들이 발굴되어 분석될수록 더 세세하게 밝혀지겠지. 아무튼 너무 재미나다.


728x90
728x90


독일의 남서부 호른슈타드-호른Hornstaad-Hoernle에서 발굴된 보리의 일부분Credit: Ian Cartwright/Oxford University



유럽의 최초 농민들이 예전 생각보다 훨씬 더 정교한 농법을 활용했다는 연구가 새로 발표되었다. 옥스포드 대학이 이끄는 연구진은 신석기시대의 농민들이 기원전 6000년 무렵에 작물에 거름과 물을 주었다고 밝혔다.

그전엔 철기시대와 로마시대 이전에는 거름을 사용하지 않았다고 추정했다. 그러나 이번 새로운 연구에서는 유럽 전역의 신석기시대 유적 13곳에서 발굴된 탄화된 과 콩 씨앗에서 분뇨에 풍부한 안정 동위원소인 질소 15가 농축되어 있음을 밝혔다. 

그 결과는 Proceedings of the National Academy of Sciences 저널에 발표되었다. 연구에서는 신석기시대의 농민들이 소, 양, 염소, 돼지 같은 가축들의 똥을 작물에 지효성 거름으로 활용했다고 제시한다. 

분뇨 거름은 똥이 천천히 분해되며 오랜 기간에 걸쳐 그 양분으로 작물을 이롭게 하기 때문에 농경지에 장기투자가 이루어져야 한다. 이 새로운 설은 농업에 장기간의 접근이 이루어졌음을 나타낸다. 

저자들은 초기 농민들이 집약적으로 관리된 토지의 고유한 가치를 인식하고 그 후손들을 위해 그를 유지하려 노력했다고 결론을 내렸다. 이 새로운 관점은 식석기시대의 농민들이 을 위해 임시로 농지를 만들고자 화전을 활용하는 유목형 농민들이었다는 기존 학자들의 견해를 뒤엎는 것이다. 

농경을 채택한 일이 사회에 장기적인 영향을 미쳤다는 건 확실한 사실이다. 그러나 유럽의 초기 농경이 지닌 특성과 그것이 사회경제적 변화를 일으키는 데 기여한 역할은 분명하지 않았다. 

주저자인 옥스포드 대학 고고학 학교의 박사 Amy Bogaard 씨는 이렇게 말한다.  

"농민들이 농지에 분뇨를 이용하는 것 같은 장기간의 투자를 했다는 사실은 신석기시대 초기 농경의 특성에 새로운 시각을 제시한다. 농지가 세대를 이어가며 똑같은 가족에게 관리되었을 수 있다는 생각은 상당히 진보적 개념인데, 비옥한 토지는 농작물 재배를 위해 매우 가치 있다고 여겨졌을 것이다. 우린 토지를 상속할 수 있는 필수품으로 여기면서 초기 유럽의 농경사회에서 자산자와 무산자 사이의 사회적 차이를 새로 만들어냈을 것이라 믿는다. 초기 농민 집단의 영토는 극심한 폭력을 수반하는 시기의 사건들을 설명하는 데 도움이 될 수 있다. 독일 탈하임Talheim에서 발굴된 기원전 6000년 후반의 신석기시대 대량 매장지 사례에서는, 토지를 개간하는 데 쓰는 돌도끼를 이용하는 가해자들에 의해 살해된 공동체의 시신이 남아 있다. 

이 연구는 보리, 밀, 렌즈콩, 완두콩 등 124가지 작물들의 약 2500개 샘플의 탄소와 질소 안정 동위원소를 분석한 자료를 기반으로 한다. 검게 탄 건 신석기시대의 불에 탄 가옥에 보존된 것을 발굴한 것이다. 그 샘플들은 기원전 6000-2400년 사이 유럽 전역의 신석기시대 유적지에서 발굴된 것이다. 

이 연구는 또한 초기 농민들의 식생활을 연구하는 데에도 중요한 영향을 미친다. 고고학자들은 당시 사람들이 무엇을 먹었는지 정보를 확인하고자 유골의 안정 동위원소를 분석하는 일에 의존한다. 분뇨에서 발견된 더 무거운 질소-15란 는 육류와 젖이 풍부한 식생활의 영향이다.

이를 통해 유럽 북서부의 초기 농민들은 동물성 단백질이 풍부한 식생활을 했다고 추정한다. 그러나 이러한 결과에는 예전 생각보다 곡물과 콩 종류에서 유래한 단백질이 더 많아, 신석기시대의 작물들이 그들 식생활에서 주요한 일부였다는 걸 시사한다.

작물의 질소 동위원소 분석은 유럽의 초기 농민들이 그들이 소유한 가축의 숫자와 거름을 운반할 물리적 노동력에 의해 제한되었지만 분뇨를 전략적인 자원으로 활용했다는 걸 보여준다. 이 연구는  분뇨를 거의 주지 않거나 아예 없이도 재배할 수 있는 더 튼튼한 작물은 놔두고, 거름으로 가장 많은 이익을 볼 수 있는 작물을 신중히 선택했다는 증거가 있다고 언급한다. 이는 지금까지 거의 인정되지 않은 작물 재배에 대한 지식을 보여준다. 

곡물과 콩 샘플은 유럽 전역에 퍼져 있는 유적지에서 가져온 것이다. 연구에서 다루는 신석기시대 유적지는 영국을 포함해 그리스와 불가리아, 독일, 덴마크 등지에 있다. 

더 많은 정보: Crop manuring and intensive land management by Europe's first farmers, www.pnas.org/content/early/2013/07/10/1305918110



Read more at: https://phys.org/news/2013-07-manure-europe-farmers-years.html#jCp




728x90
728x90
요 며칠 유전자변형 벼의 상용화와 관련한 소식이 눈에 자주 띄었다. 그에 반대하는 측에서 우려하는 바가 무엇인지는 잘 알겠지만, 그걸 읽다 보면 우려를 넘어 공포를 조장하는 측면이 있어 몇 가지 짚고 넘어가는 것이 좋지 않을까 하는 생각이 들었다. 그래서 아침으로 먹을 미역국을 끓이다가 잠시 이렇게 끄적인다.

먼저 이번에 상용화하려고 안전성 심사를 받는다는 유전자변형 벼는 기사를 검색하면 농민신문에 나오는 두 가지 종류인 것 같다. 하나는 항산화물질로 잘 알려진 레스베라트롤 성분을 생산하는 벼이고, 다른 하나는 가뭄에 저항성이 있는 벼이다.

그런데 이런 종류의 유전자변형 벼가 상용화되면 무슨 일이 벌어질까? 인도처럼 부채로 인해 자살하는 농민이 속출할까? 그렇지는 않을 것 같다. 농가부채 문제와 그로 인한 농민의 죽음, 농촌의 어려움은 이미 한바탕 휩쓸고 지나갔지 않은가. 그리고 인도의 경우, 유전자변형 목화가 농민들의 부채를 증가시킨 직접적인 원인이라기보다는 여러 간접적인 원인 가운데 하나라는 것이 밝혀지고 있는 상태이기도 하다(이와 관련하여 옮긴 글이 하나 있다. 참조하시길 바란다). 유전자변형 목화의 종자 가격이 비싸기는 하지만 수확량을 늘린 증거는 있고, 대신 기후 등의 요인으로 관개시설이 열악한 상황에서 농사가 망해 부채가 증가했다는 분석들이 힘을 얻고 있다.

그리고 또, 유전자변형 벼의 종자 가격은 민간의 종자회사가 주도하는 것이 아니라 국가 기관에서 관리하고 있다. 한국에서 식량작물, 특히 벼는 농촌진흥청이란 기관에서 꽉 움켜쥐고 있다. 그런 만큼 그게 시장에 풀려도 가격이 그리 비싸지 않을 것 같다. 그걸로 수익을 내려 든다면 국민의 피 같은 세금으로 돈놀이를 한다는 거센 비판에 직면할 것이다. 물론 요즘 추세대로 그 기술을 민간의 종자회사에 넘기고, 그 종자회사가 그걸로 수익을 추구할 가능성은 있다. 그런데, 과연 유전자변형 작물에 대한 부정적 인식이 퍼져 있는 상황에서 선뜻 유전자변형 벼를 재배하고 판매하려는 기업 등이 나올지 모르겠다. 그래서 산업용으로 쓰겠다고 하는 것이겠지만 말이다.

또 유전자변형 벼가 슈퍼잡초나 슈퍼해충, 슈퍼질병을 동반한다는 이야기가 있다. 아르헨티나의 사례를 증거로 제시하는데, 여기저기서 들리는 이야기에 의하면 그것도 좀 자세하고 정확하게 살펴볼 필요가 있을 것 같다. 그에 대해선 아직 자세히 알지 못하기에 일단 넘어가기로 하자. 그보다, 슈퍼잡초는 제초제 저항성 유전자변형 작물에 계속해서 살포하는 제초제와 깊은 연관이 있는데, 그것은 굳이 유전자변형 작물이 아니더라도 현재의 농업 관행에서도 문제가 되고 있는 일이다. 충북 농업기술원에서 몇 년 전 발표한 바에 의하면, 충북의 논 가운데 약 26%에서 제초제에 내성이 있는 잡초가 발견된다고 한다. 이는 비단 충북만의 문제는 아닐 것이다. 화학농법에 길들여져 있는 곳일수록, 면적이 대단위일수록 더 심하게 발견되지 않을까 싶다. 상황이 이렇듯 유전자변형 작물이 슈퍼잡초 문제에 기름을 붓긴 했겠지만, 그 존재 자체가 문제라기보다는 화학물질에 과도하게 의존하는 농법의 문제가 더 큰 것 같다. 또 슈퍼해충은 이번에 승인을 기다리는 벼들이 해충 저항성이 아니라 기능성 성분을 생산하는 것과 가뭄에 저항성을 갖춘 것이라는 점에서 크게 상관 없을 듯하다. 질병 문제도, 글리포세이트의 발암 가능성을 염두에 두고 지적한 것 같은데 그와 상관 없으니 그리 문제가 되지 않을 가능성이 높다. 혹 유전자변형 벼를 직접적으로 섭취해서 새로운 질병이 생기는 것이라면, 아직 그에 대해서는 아무 증거도 연구도 없으니 뭐라 이야기하기 어렵겠다.

그리고 특허권 문제. 이것도 민간 기업이 아닌 국가의 기관이 개발하여 보급하는 것이니만큼 유명한 캐나다의 사례처럼 골치아프지는 않을 것 같다. 또한 유전자변형 벼가 기존 벼 품종들을 오염시키는 문제도 벼는 자기꽃가루받이를 하며 2% 안쪽에서 남의꽃가루받이가 되어 돌연변이가 생긴다는 점을 보면, 또 요즘의 벼농사에서는 몇 년에 한 번씩 보급종으로 종자갱신이 이루어진다는 점을 생각하면 우려만큼 큰 문제가 발생하지 않을지 모른다.

유전자변형 문제는 파면 팔수록 참 어려운 문제 같다. 단순히 과학적 차원만이 아니라 사회, 경제, 역사적 맥락까지 두루 살피며 그것이 미칠 영향과 파장, 긍정적 효과 및 부작용 등을 논의할 수 있어야 하는데 그러한 장이 마련되어 있지 않은 것 같다. 내가 여기서 유전자변형 벼를 옹호하는 듯한 글을 써서 그렇다면 당신은 그에 찬성하는 입장이냐고 추궁을 당할지도 모르겠다. 물론 나는 절대적으로 찬성하는 입장은 아니다. 인간이 지나온 농경의 역사는 결국 끊임없는 육종의 역사였고, 그러한 맥락에서 보자면 유전자변형도 그 하나의 수단에 지나지 않는다고 생각한다. 그런데 현재까지 그 기술과 관련된 자본과 권력의 움직임을 보면 이건 아니다 싶고... 그 이외의 방법으로도 해결할 수 있는 길이 있는 것 같은데 왜 그리 밀어붙이는지 싶고... 아무튼 뭐라 한마디로 딱 잘라 결론을 내리기 어려운 복잡한 문제라 말도 횡설수설하게 된다. 그저 결론은, 유전자변형 문제를 정확하고 날카롭게 비판해야지 공포에 기반한 선동으로 나아가지 않았으면 한다. 그건 오히려 상대를 돕는 길일 뿐이다.


728x90
728x90


밀 농사는 현재의 터키에서부터 남쪽(보라색 화살표)과 북쪽(노란색 화살표)을 통해 유럽으로 퍼졌다. 그런데 이번 Bouldnor Cliff의 바닷속 토양에서 복원한 DNA를 분석하니 영국에서 밀이 재배되기 2천 년 전에 전파되었음이 밝혀졌다.




영국 남부 해안에 살던 수렵채집인들이 영국 제도에 밀 농사가 싹트기 2천 년 전에 밀을 수입했다고 새로운 연구에서 제시되었다.


이러한 수렵채집인과 농민들 사이의 거래가 북서 유럽 전역에 농업이 확산되는 기반을 마련했다고 영국 워릭Warwick 대학 고고유전학과(archaeogenetics)의 Oliver Smith 씨와 그 동료들이 제의했다. 지금까지 연구자들은 이주 농민들이 유럽의 수렵채집인 무리를 급속히 밀어내거나 그들이 농경생활로 서서히 전환했다고 주장해 왔다. 


현재 와이트 섬의 침수된 지역인 Bouldnor Cliff라는 곳의 약 8천 년 된 토양에서 추출된 DNA가 밀이 작물화된 초기인 터키의 그것과 일치한다고 과학자들이 2월 27일자 Science에 보고했다. 터키의 농민들은 10,500년 전 밀과 다른 몇몇 식물을 작물화했다. 작물 재배는 7,600년 전 프랑스 서부에서 영국으로 가까워지기 시작해, 400년 뒤 Bouldnor Cliff에 이르렀다. 그리고 영국에서 경작은 훨씬 뒤인 약 6천 년 전에 시작되었다.




잠수부들이 밀 농사를 짓기 2천 년 전에 수렵채집인들이 밀 생산물을 얻었던 곳인데 현재는 침수된 지역에서 발견한 석기를 들고 있다.



Bouldnor Cliff에서 잠수부들이 석기와 기타 고대인들의 유물을 발굴했다. Smith 씨의 팀은 8천 년 전 해수면이 상승하기 전에 밀봉된 토탄지의 토양 샘플 네 가지에서 DNA를 얻었다. 복구된 DNA에서 나무, 풀, 허브만이 아니라 작물화된 밀이 나왔다. 과학자들은 Bouldnor Cliff에서 밀이 재배되었다는 아무런 증거를 발견할 수 없었다. Smith 씨 들은 놀랄 만큼 정교한 무역망이 적어도 일부 유럽의 수렵채집인과 발전된 농경민 사이에 연결되어 있었던 것이라고 주장한다.



https://www.sciencenews.org/article/wheat-reached-england-farming

728x90

'농담 > 농-문화' 카테고리의 다른 글

1섬을 수확하는 면적이 마지기인가?  (0) 2015.03.07
초기 농경은 어떠했을까?   (0) 2015.03.05
로마의 달력  (0) 2015.02.25
인공감미료는 해로운가?   (0) 2015.02.21
일본의 볏짚공예에서 배우다  (0) 2015.01.22
728x90

멕시코 누에보레온(Nuevo Leon) 주에서 기원전 3500~3000년 무렵의 것으로 계산되는 수렵채집인의 씨앗, 옥수수자루, 옥수수 잎이 발견되었다. 


아직 이와 관련된 고고학적 유적은 발견되지 않은 상태인데, 이 증거물들이 유목하는 수렵채집인의 것이 아닌가 추정하고 있다.


멕시코에서는 1950~1960년대 타마울리파스와 오악사카, 푸에블라 주의 동굴에서 발굴된 기원전 7000~3000년 전의 세 작물(옥수수, 호박, 콩)이 가장 오래된 주요한 작물로 등록되어 있다. 



바위의 은신처에서 발견된 옥수수 속과 깍지들.



옥수수와 관련된 증거만이 아니라 바위의 은신처에서는 벽화도 발견되었다니 당시의 생활상과 관련된 상징들도 읽어낼 수 있을 것으로 전망된다. 




누에보레온 엘모로(El Morro)에서 발견된 초기 농업의 증거인 옥수수자루. 이것이 무려 5000년도 더 된 것이라니 놀랍다. 17~18cm 정도이니까 한뼘이 채 되지 않는 크기.





포장된 옥수수 껍질.



http://archaeologynewsnetwork.blogspot.de/2013/11/proto-agricultural-activity-found-in.html#.UqjlGWRdWhE


728x90

'농담 > 농-문화' 카테고리의 다른 글

집에서 밥을 먹지 않는 이유   (0) 2014.06.14
1922년, 미국의 농업 지도  (0) 2014.06.11
일본의 농기구 대장장이  (0) 2013.09.26
소농이 답이다  (0) 2013.09.19
거제도민의 노력  (0) 2013.09.17
728x90


Birds_eye_views_of_an_enduring_rice_culture.pdf


Birds_eye_views_of_an_enduring_rice_culture.pdf
2.36MB
728x90

'곳간 > 문서자료' 카테고리의 다른 글

고추 풋마름병  (0) 2012.07.11
토마토 품종  (0) 2012.07.11
세계의 식량 손실과 음식쓰레기  (0) 2012.07.11
하늘이 내린 천적  (0) 2012.07.11
농약 바로 알기  (0) 2012.07.11
728x90

Summary:

Agrobiodiversity, or agricultural biodiversity, includes all the components of biological diversity of relevance to food and agriculture, as well as the components of biological diversity that constitute the agro ecosystem: the variety and variability of animals, plants and micro organisms, at the genetic, species and ecosystem levels, which sustain the functions, structure and processes of the agro ecosystem. Indigenous and traditional agricultural communities throughout the world depend on, and are custodians of, agrobiodiversity maintained within agricultural landscapes through various forms of traditional resource management. These communities are coping with an increasing number of interlocking stresses that result from different aspects of global change, including the problems related to population increase, insecure and changing land ownership, environmental degradation, market failures and market globalization, and protectionist and inappropriate policy regimes and climate change (Morton, 2007). Climate change presents a major concern, often interacting with or exacerbating existing problems. It makes new demands for adaptation and coping strategies, and presents new challenges for the management of the environment and agro ecosystems. Discussions on global policies related to climate change have largely disregarded the potentially negative effects of many of the proposed policies on indigenous and traditional agricultural communities and their livelihoods and rights. Agrobiodiversity has also been largely overlooked in discussions on climate change, despite its importance for the livelihoods of rural communities throughout the world and for the development of adequate adaptation and mitigation strategies for agriculture. The Intergovernmental Panel on Climate Change (IPCC) report (Adger et al., 2007) ignores the role of diversity in production systems and the central role that agrobiodiversity will have to play in both adaptation and mitigation at the country, landscape, community and farmer levels. Indigenous and traditional agricultural communities are adapting to change and are developing ways of strengthening the resilience of agricultural landscapes through various local strategies based on the protection of traditional knowledge and agrobiodiversity. The approaches being adopted include the use of centuries old traditional practices (e.g. the forest management of indigenous Hani people of Yunnan province in China, and 3000 year old Cajete terraces and the associated agricultural system in Mexico) and their adaptation to changing conditions, as well as the development and adoption of new approaches. Over the past two years the Platform for Agrobiodiversity Research has been collecting information on the ways in which indigenous peoples and rural communities have been using agrobiodiversity to help cope with climate change. The information comes from over 200 different stories, reports and articles from many different sources . Here we present an analysis of the information and identify the most important adaptation strategies adopted. We also set out some of the ways in which agrobiodiversity can be used to help improve the adaptability and resilience of the farming systems managed by rural communities and indigenous peoples around the world. A conceptual framework was designed to enable the review of a wide range of community devised strategies employed in agricultural ecosystems and landscapes in different environments (mountains, drylands, forests, wetlands and coastal regions). The results of the review elucidate the intrinsic link between adaptation and the protection of ecosystem, agrobiodiversity and traditional knowledge.

Keywords:

Agro-biodiversity, climate change, Agroforestry, Home gardens and other diversity-rich approaches, Crop, soil and water management, Organic agriculture, Traditional food systems, Pastoralism, Pollinator


UNDERSTANDING ADAPTATION

Together with increasing temperatures, climate change also leads to increasingly unpredictable and variable rainfall (both in amount and timing), changing seasonal patterns and an increasing frequency of extreme weather events, floods, droughts and .re. These can result in decreasing productivity, changing agro-ecological conditions, increasing or altered patterns of pest activity and accelerating rates of water depletion and soil erosion. The changes, and the responses of communities to them, are many and varied in both nature and extent, depending on situation, culture, environment (mountains, drylands, forests, wetlands, coastal), agro-ecosystem, environment and opportunities. In order to understand and analyse the information an appropriate conceptual framework was needed.
The impacts of climate change are felt at the level of the natural resource base upon which rural communities depend, at the farming system level, and at the level of individual species (Vershot et al., 2005). At each level, communities employ a different set of actions to enhance the resilience of local food systems. This grouping of activities into the ecosystem or landscape level, the farm level, and the species level provides a basis for the development of a conceptual framework for helping to understand how communities use agrobiodiversity and ecosystem services to adapt to climate change.
Indigenous and traditional agricultural communities develop their local food systems at the ecosystem or landscape level (or the system level) by managing ecological and biological processes within the system. In this way, they construct niches, shape microclimates, encourage landscape regeneration and influence gene flow. These management activities are often regulated by social institutions, customary laws and cultural values, which encompass traditional agro-ecological knowledge. Based on the feedback from the environment, the management practices are adjusted in a way that supports the maintenance of the ecosystem, helps maintain agrobiodiversity and enhances resilience to climate change (Salick and Byg, 2007). This type of adaptive management is perhaps best understood by using a whole system approach, in which the adaptability and resilience of the system and its components are determined by actions at different levels and interactions within the system, as illustrated in Fig. 1. The system can be an ecosystem, for example a watershed, or an agricultural landscape spreading across ecosystems, for example an agricultural landscape consisting of terrestrial and aquatic components.
Some studies refer to the whole ‘socio-ecological’ system as a way of including the concept of adaptation in environments in which humans are involved. Socio­ecological systems behave as complex adaptive systems, in which the humans are integral components of the system seeking to decrease vulnerability and increase resilience of the system through different management strategies (Walker et al., 2004). The vulnerability of such systems relates to the exposure and sensitivity to perturbation and external stresses, and the capacity to adapt (Adger, 2006). In these systems, resilience can be described as the capacity of a system to absorb recurrent disturbance and reorganize while undergoing change without losing its function, structure, identity and feedback (Walker et al., 2004). The ability of the humans to influence the resilience of the system is referred to as their adaptive capacity (or adaptability). The material within the agro-ecosystem, including species complexes, soil biota and traditional varieties, can also possess greater or lesser adaptability and capacity to evolve and change in the face of changes in temperature, rainfall or other environmental changes.


Figure 1 -Resilience is enhanced through the activities at and between different levels within a system.


Here we use this system-based approach to identify (i) the main adaptation strategies at the levels of the ecosystem, the agricultural system, and inter- and intra-species diversity, and (ii) interactions between the levels that contribute to the resilience of a system. A special focus is put on the social and community dimensions of adaptation discussed in the sections following the results of the analysis. The main patterns and approaches that emerge are illustrated with specific examples taken from the cases studied.

ADAPTATION STRATEGIES
ECOSYSTEM ­ OR LANDSCAPE-BASED APPROACHES

At the ecosystem or landscape level, adaptation activities can reduce the impacts of climate change and buffer their effects, reducing the negative impacts on humans and the environment. A variety of projects have been undertaken to protect and restore ecosystems, rehabilitate degraded landscapes and sustainably manage natural resources. These strategies appear to reduce vulnerability and strengthen resilience of local food systems to floods, droughts, rising sea level and extreme weather events. Examples from forest and mountain ecosystems, coastal areas, drylands and wetlands are given in the following paragraphs.
In Nicaragua, Honduras and El Salvador, where climate change has exacerbated soil erosion and watershed degradation, a forest landscape restoration project has been undertaken. This aimed to increase the resilience of tropical hillside communities by halting deforestation, restoring watersheds, diversifying production systems and encouraging sustainable landscape management (IISD, 2003a). In the Philippines, the Camalandaan Agroforest Farmers Association, a community-based land and resource management organization, have undertaken tree planting and forest protection to reduce sudden onrushes of water (during the rainy season) and depletion of water reserves (during the dry season) (Equator Initiative, 2008b).

In the coastal regions of Asia and Africa, community-based mangrove restoration has been undertaken in Indonesia, Thailand, Cambodia, Kenya, Senegal and Zanzibar. Mangroves function as a protection against storms and can help to mitigate salt water intrusion, coastal erosion and floods.
Restoration of watersheds is helping to reduce vulnerability to climate change-associated stresses in a number of regions. In the drought-prone regions of Maharashtra in India, rehabilitation of a watershed ecosystem conducted on a micro-catchment basis helped to improve soil conditions, increase water availability, regenerate landscape and diversify agricultural production through a number of activities, including water harvesting and the encouragement of natural regeneration (IISD, 2003b).
In many cases, sustainable management practices have been revived and implemented to reduce vulnerability and enhance resilience. In Sudan, a community-based rangeland rehabilitation project aimed at increasing resilience to drought by improving soil productivity through sustainable land management, diversification of production systems, agroforestry and sand dune fixation (IISD, 2003b). In Tibet, pastoralists have engaged in the restoration of peatlands (Wetlands International, 2009). Thousands of hectares have been restored by regulating grazing pressure and erosion. It is believed that this will regulate the .ow of the Yellow and Yangtze rivers, thereby reducing flooding and drought risks for the communities downstream.

IMPROVING THE RESILIENCE OF AGRICULTURAL SYSTEMS

At the level of the agricultural system, adaptation strategies include integration of trees and livestock into production systems; cultivation of a higher diversity of crops (diversification); and improved crop, water and soil management. These are not usually carried out singly but are combined in different ways depending on the ecology, needs of communities, availability of different materials and the challenges faced. Most adaptation initiatives include the use of approaches based on agroforestry and crop diversification, which are often combined with improved crop, soil (including soil biota and nutrients) and water management. Adaptation activities include both the revival of traditional production practices and the adoption and development of new techniques (e.g. a switch to low input agriculture and the use of alternative ways of livestock management). Some examples follow.

Agroforestry

Agroforestry is an increasingly important adaptation strategy for enhancing resilience to adverse impacts of rainfall variability, shifting weather patterns, reduced water availability and soil erosion. In Burkina Faso, to fight desertification and rehabilitate degraded land, trees are planted in the fields and around villages with a traditional water harvesting and soil improvement technique known as zaï. This technique, in combination with crop diversification and other techniques, through innovation and experimentation, has resulted in the development of an integrated agro-sylvo-pastoral system with higher resilience to droughts (Taonda et al., 2001).

Home gardens and other diversity-rich approaches

A number of adaptation case studies emphasize the importance of diverse home gardens in ensuring the family food supply in areas significantly affected by climate change. Examples from Bangladesh describe two types of adaptation strategies for enhancing the resilience of home gardens. In drought-prone regions, the resilience of traditional homestead gardens is strengthened through intercropping of fruit trees with vegetables, small-scale irrigation and organic fertilizers (FAO, 2010a). In the flood-affected regions, floating gardens have been created for cultivation of a mix of traditional crops, including saline-tolerant vegetables such as bitter gourd, red amaranth and kohlrabi. The floating gardens, in combination with alternative farming methods such as duck rearing and fishing, are important source of food during floods (Haq et al., 2009).

Crop, soil and water management

In arid and semi-arid regions, and increasingly in the sub-tropics and the tropics, soil productivity and water availability have decreased due to a combination of climatic and non-climatic factors such as ecosystem degradation and over-exploitation. Improved management of soil and water within cropping systems has helped communities to cope with these problems. In a number of adaptation projects, traditional soil and water management practices involving diversified cropping have been revived. Traditional knowledge is often combined with innovation resulting in better crop, soil, and water management practices. The most common methods for the improvement of soil productivity and water availability are a combination of: minimum soil disturbance, direct seeding or planting, live or residue mulching, cover crops with deeper rooting crops including annual and perennial legumes, micro-catchment water harvesting (e.g. infiltration pits and planting basins) and re-vegetation. These are key elements of practices that have become known as Conservation Agriculture in which ecosystem services are enhanced within the production systems at the farm and landscape level.
In Burkina Faso, to rehabilitate the soil, farmers apply mulch to degraded land, which attracts termites. The termites open burrows through the sealed surface of the soil and slowly improve soil structure and water infiltration and drainage (Ouédrago et al., 2008). In Sri Lanka, saline lands are brought back into production with green manure. Green manures are grown in situ (sunn hemp, green gram, black gram and grasses) or green leaf manure is obtained from trees and bushes around the fields (Vakeesan et al., 2008). In Jamaica, guinea grass mulching is a local strategy adopted in the low-rainfall areas to control soil erosion, increase the water retention capacity of the soil and improve soil structure (FAO, 2010b).
Traditional rainwater harvesting and irrigation systems have been revived and play an important role in augmenting the water supply in water stress-prone environments. In Tunisia, there is an increasing interest in jessour, a traditional system of dams and terraces for collecting run-off water, which enables cultivation of olives, fruit trees, grains and legumes (Reij et al., 2002). In the Andes, the Quechua have revived the waru waru, an ancient cultivation, irrigation and drainage system for increasing the productivity of land with high salinity levels and poor drainage in areas with frequent droughts and frost (Ho, 2002). The waru waru regulate microclimate, soil moisture and pest activity.

Organic agriculture

Farmers’ experiences show that organic agricultural practices, both traditional and innovative, can strengthen the resilience of local food systems. Reports on the importance of organic agriculture come from India, Ethiopia, Bangladesh, Nepal, Honduras, Sri Lanka, Thailand, Nicaragua, Cuba and the Philippines. In Rajasthan, India, an increasing number of small-farmers are adopting vermicomposting – a non-traditional method of improving the nutrient content and water-holding capacity of the soil. This method is combined with cultivation of stress-tolerant crops, crop diversification, green manuring and mulching (Shah and Ameta, 2008). In Nepal, farmers use traditional and non-traditional organic agricultural practices to improve water use efficiency, prevent erosion and improve the productivity of cropping systems (Ulsrud et al., 2008).

Traditional food systems

In traditional food systems a number of methods are used to maintain soil productivity
(e.g. intercropping, crop rotation, fallowing). These practices continue to ensure food and livelihood security under increasing climate change and variability. The United Nations Framework Convention on Climate Change database of local coping strategies includes the following examples of traditional agricultural practices (UNFCCC, 2010).

  • In Tanzania, the Matengo living in the highlands have cultivated steep slope fields for more than a century using a grass-fallow-tied ridge system to grow maize, beans, wheat and sweetpotatoes, all on a rotational basis with a fallow period.
  • In Indonesia, the Kasepuhan of West Java optimally utilise their natural resources through an integrated fish-rice system. Fish-rice farming systems are also used in a number of other Asian countries such as Bangladesh.
  • In Goa, India, the Khazans’ agriculture-aquaculture system, based on the principle of a tidal clock and salinity regulation, ensure sustainable management of resources. on the Indian Andaman and Nicobar Islands farmers cope with the extreme heat and dryness of summer through a number of techniques, including mulching and intercropping of coconut and betel nut seedlings with banana plants.
  • In Bhutan, in periods of food scarcity due to extended dry seasons and infestation by pests and diseases, subsistence farmers rely on wild foods. The farmers cultivate crops, rear livestock, and manage common pool resources such as communal grazing land and communal forests for leaf litter and forest-based food products (wild tubers, fruits, vegetables, medicines etc). In times of crop failure due to delayed or weak monsoon and pests, livestock and wild foods meet the household nutritional requirements.

Pastoralism

Pastoralists in the Sahel, by breeding their herds over many generations in often harsh and variable environmental conditions, developed many different breeds with valuable traits. Traditional pasture and herd management systems include the conservation of natural ecosystems through extensive ranching and rotational grazing, and keeping a mixture of cattle, goats and sheep (Morton, 2007). Due to the effects of climate change, mainly the more frequent occurrence of drought; species and breeds with adaptive traits are becoming increasingly important. In the Ethiopian Borana rangelands, pastoralists have retained their nomadic ways but are replacing their cattle herds with camels, which feed on trees as well as grasses and can survive longer periods without water (New Agriculturalist, 2009a).

Pollinators

During the past few years apple production in Himachal Pradesh, India has been continually declining. A study has shown that this decline in productivity is due to pollination failure (Pratap, 2008). The reasons are lack of trees that can provide fertile compatible pollen and lack of pollinators (bees, butter.ies and moths). To overcome the lack of insect pollinators farmers are renting honeybees, decreasing the numbers of pesticide sprays and carrying out hand pollination (Pratap, 2008).

THE USE OF INTER- AND INTRA-SPECIES DIVERSITY

Maintenance of high levels of inter- and intra-species diversity is a strategy to decrease vulnerability and enhance resilience to climate change and associated stresses. Adaptation activities include the maintenance and reintroduction of traditional varieties, the adoption of new species and varieties to meet newly developed production niches, and the development of ways of ensuring that materials remain available (e.g. community seed banks) and adapted (e.g. participatory plant breeding). Linked to the developed of adapted and adaptable materials have been adjustments in cropping patterns and crop cycle.
As a result of climate change, indigenous and local crops and varieties, particularly drought-, salt- and flood-tolerant, fast-maturing and early- or late-sowing crops and varieties, are increasingly cultivated. Their availability is improved though the establishment of community seed banks. Reports from drought-prone regions of Zimbabwe, India, Nicaragua, Kenya, Vietnam, the Philippines, Mali, the Timor Islands and other countries show an increasing importance of drought-tolerant crop varieties of millet, sorghum and rice. The reports also mention other drought-tolerant species and varieties of cereals, fruit and vegetables as well as wild species. In Botswana and Namibia, drought-tolerant wild fruit tree species (e.g. Sclerocarya birrea, local name: morula; Azanza garckeana, local name morojwa) are planted around the villages with the aim of domesticating them (Bonifacio and Zanini, 1999). In the areas experiencing an increased level of flooding and salinization of freshwater and agricultural land; salt- and flood-tolerant crops and varieties have been introduced. In India, community seed banks with a focus on rice have been established to strengthen the community seed supply of flood-resistant varieties in Bihar and Bengal and saline-resistant varieties in Orissa (Navdanya, 2009).
Several reports indicate a switch to short-duration varieties and adjustments in planting and harvesting dates as a response to a decreasing length of growing season and changes in seasonal patterns of precipitation and temperature. In India, in areas where crops had failed due to heavy rainfall during the pod formation stage, farmers have switched to short-duration varieties and adjusted sowing depth and date (unpublished data). In Cambodia, there is a shift in the planting date of rice; rice seedlings are planted in November instead of in September (Mitin, 2009). In Ghana, farmers are planting early maturing crops and sowing the seeds earlier than in previous years (Mapfumo et al., 2008).
In Uttar Pradesh, in the foothills of the Himalayas, communities are experiencing an increasing frequency of flash floods; dry spells during floods; changes in flood timing (longer, delayed or early); increased duration and area of waterlogging; and changes in time, volume, and pattern of rainfall. Adaptation to climate change required the development of a new crop calendar as illustrated below (Wajih, 2008). Crops that are fast-maturing, flood-tolerant and with soil-rehabilitating characteristics are planted according to the calendar.

Adapted from Wajih, 2008
The selection of new varieties by farmers and participatory plant breeding (PPB) are supporting adaptation to changing production environments. Often, adaptation and selection of traditional varieties is associated with on-farm conservation activities. In Bangladesh, the development of short-duration rice varieties formed part of the adaptation strategies of people living in the Gaibandha district of the Char islands, where there has been an increase in the land area affected by major floods from 35% in 1974 to 68% in 1998. on Timor Island, to strengthen the resilience of agriculture to erratic rainfall, farmers have developed their own varieties of maize, sorghum, foxtail millet, dryland rice and cassava (Kieft, 2001).
In Nepal, changes in the monsoon pattern have caused a disruption to rain-fed agricultural systems and exacerbated genetic erosion of local landraces with drought-resistant and lodging-tolerant characteristics. Farmers have responded by establishing a seed bank and engaging in a PPB programme. A total of 69 rice varieties have been revived and stored at the seed bank (Ulsrud et al., 2008).
In Honduras, farmers organized community-based agricultural research teams, to diversify their plant genetic resources and develop hardier plant varieties that grow well on their soils. Responding to the higher occurrence of hurricanes, farmers were able to produce improved maize varieties through a participatory breeding process that are shorter and capable of withstanding the physical trauma brought by the hurricanes, with a higher yield and yet are still adapted to high-altitude conditions. The selection process was accompanied by a conservation effort, as the seeds of the selected species are stored in a community seed bank, assuring availability of healthy and resistant plants (USC Canada, 2008).
In several countries the System of Rice Intensification (SRI), a different rice agronomy that also works well with traditional varieties, is spreading and already raising productivity and income of more than 1 million small indigenous and traditional farmers around the world on over 1 million hectares. SRI benefits derive from changes in the ways that their existing resources are used through a set of modified agronomic practices for managing rice plants and the soil, water and nutrients that support their growth.

Some of the main adaptation strategies at different levels
Ecosystem or landscape

Activities at the ecosystem and landscape level aim to mitigate and buffer the effects of climate change through ecosystem protection and restoration, landscape rehabilitation and the sustainable use of natural resources. Examples are:

  • Reforestation of tropical hillsides, riparian forests and mangroves.
  • Rangeland rehabilitation and improved pasture management.
  • Restoration of wetlands, peatlands, watersheds and coral reefs.
  • Re-vegetation in drylands.

Agricultural systems
At the agricultural system level, the resilience of local food systems is enhanced through the diversification and sustainable management of water and soil. Commonly employed strategies are:

  • Diversification of agricultural landscapes (agroforestry).
  • Diversification of production systems (cultivation of a higher diversity of crops and varieties and crop-livestock-trees integration.
  • Low-input agriculture, soil conservation and improved water management and use efficiency (mulching, cover crops, rainwater harvesting, re-vegetation, fallow, intercropping, crop rotation).
  • Adjustments in crop and herd management (changes in crop cycle).

Intra- and inter-species diversity

Intra- and inter-species diversity is protected, used and redistributed to strengthen the resilience of agricultural systems and maintain production in stress-prone environments. The main adaptation measures are:

  • Use of stress-tolerant and fast-maturing crop species and varieties; and stress-tolerant species and breeds of cattle.
  • Protection, reintroduction and distribution of traditional crops through community seed banks and on-farm conservation.
  • Stress tolerance improvement through farmers’ selection and participatory plant breeding.

A WHOLE SYSTEM APPROACH

The main types of responses to climate change identified in the previous section illuminate the cross-scale processes, providing an insight into the adaptation dynamics (Fig. 2). The interplay between adaptation strategies at different levels contributes to the resilience of the whole system through (i) the links between natural and cultivated landscapes; (ii) the supportive role of agriculture in the protection and restoration of ecosystems; and (iii) the maintenance of species and genetic diversity.


Figure 2 – Adaptation dynamics.


THE LINKS BETWEEN NATURAL AND CULTIVATED LANDSCAPES

In many traditional agricultural landscapes, the wild and cultivated areas are integrated under a management system to complement each other. For instance, the common practice of rotational farming (shifting cultivation) exemplifies a situation in which it is often difficult to distinguish between cultivated and wild or natural landscapes. Within cultivated fields, where crops are planted, wild species are also recruited and tended. Various forms of forests and individual trees, though not planted, are cared for, managed and used for food, fuel, medicine, timber and various other necessities (Rerkasem et al., 2009).
The wild areas provide services essential for the resilience of the cultivated regions including erosion control, microclimate regulation, pest regulation and pollination. Wild species provide alternative sources of food and income during the periods of bad harvest or herd loss due to unfavourable weather conditions. Many communities harvest wild vegetables, fruits, tubers and other edibles from the forest during the year, especially during the season of greatest food scarcity.
Wild species with traits such as tolerance of extreme temperatures and salinity are becoming increasingly important resources for communities. In Bangladesh flood-affected communities cultivate saline-tolerant varieties of reeds and saline-tolerant and drought-resistant fruit and timber trees, to reduce vulnerability to floods and sea-level rise and ensure longer-term income generation. This involved the establishment of community tree nurseries and distribution of indigenous varieties of coconut, mango and other fruit species as well as mangrove-associated species (Selvaraju et. al., 2006).

THE ROLE OF AGRICULTURE IN ECOSYSTEM PROTECTION AND RESTORATION

Sustainable types of agriculture can reduce the adverse impacts of climate change on fragile ecosystems and encourage rehabilitation of degraded landscapes, as illustrated by the following examples. In Rajasthan, India, where drought and environmental degradation severely impaired the livelihood security of local communities; a community-led, watershed-restoration programme reinstated johads, a traditional rainwater-harvesting system. Johads are simple concave mud barriers, built across small, uphill river tributaries to collect water and encourage groundwater recharge and improve forest growth, while providing water for irrigation, domestic use, livestock and wildlife (McNeely and Scherr, 2001). Restoration of over 5000 johads in 1000 villages has resulted in the restoration of the Avari River and the return of native bird populations (Narain et al., 2005). In Honduras and Nicaragua, an increasing number of farmers are abandoning the slash-and-burn technique and adopting the Quezungal slash-and-mulch agroforestry system, which draws on traditional practices of tree management and reduces crop damage caused by natural disasters (Bergkamp et al., 2003). In Honduras, the result has been the natural regeneration of around 60 000 ha of secondary forest, restoration of soil quality, and consequently better crop yields (New Agriculturalist, 2009b).

THE MAINTENANCE OF SPECIES AND GENETIC DIVERSITY

Cultivation of a high level of diversity in an agricultural system strengthens the system’s resilience. In turn, agricultural systems with diverse species and varieties of crops and livestock provide for the maintenance (in situ conservation) of diversity and the evolution of continually adapted populations. In many cases, introgression of genes from wild relatives or cross pollination results in new genotypes or helps to maintain the broad genetic base within crops In situ conservation of the agricultural diversity of genes and species often occurs within a mosaic of agricultural landscapes consisting of home gardens, fields, groves and orchards, and boundaries and niches that create diverse selection and adaptation factors through exposure to the environmental change. An example of the importance of genetic diversity has been the maintenance of traditional pearl millet and sorghum varieties in Niger and Mali over the past 20-30 years. While varietal identity has often altered over this period, total diversity and average yields have remained broadly unchanged, despite periods of significant drought and the occurrence of other environmental and social stresses. It appears these materials show sufficient adaptability to enable farmers to cope, at least partially, with periods of significant rainfall shortage and that farming practices and local institutions have favoured the maintenance of diversity (Kouressy et al., 2003; Bezançon et al., 2009). Interestingly, in both countries, there was some loss of long-duration types with an apparent increasing preference for rapidly maturing varieties.

COMMUNITY DIMENSION OF ADAPTATION

Adaptive management of agrobiodiversity involves activities at both the individual and community levels. At the individual farmer level, agricultural systems are diversified and various management practices adjusted. However, the adaptive management of water, soil and agrobiodiversity takes place at the ecosystem or landscape level and requires communal efforts, often regulated through social institutions. Local institutions that endorse the sustainable management of agrobiodiversity and landscapes have been re-established in several adaptation projects. In Niger, the Tuareg nomads have protected and improved their pastureland through pasture-management associations; thereby strengthening the resilience to both climatic and non-climatic pressures (New Agriculturist, 2009a). In a mountainous region of Ecuador, a community-based initiative has promoted sustainable use of resources to prevent ecosystem degradation resulting from inappropriate agricultural practices and overgrazing (Equator Initiative, 2004). The Turkana pastoralists in northern Kenya, and Sukuma agro pastoralists in Shinyanga, Tanzania, have restored degraded woodlands through the revival of local institutions for natural resource management (Barrow and Mlenge, 2003). The Turkana restored over 30 000 ha and the Sukuma 250 000 ha of woodland; which has resulted in a mitigation of risks associated with droughts (ibid).
The need to replenish diversity in agricultural systems has encouraged the community management of genetic resources. This has resulted in the establishment of community seed banks to facilitate the revival and distribution of traditional and stress-tolerant crops and varieties. In Uttar Pradesh, India, the establishment of seed banks to facilitate the diversification of local food systems is one of the flood coping mechanisms (Wajih, 2008).
Just as local crops and varieties needed to be reintroduced or new crops introduced, in some cases, traditional practices have also had to be adjusted. Indigenous forecasting techniques have become less reliable due to the increasing variability and irregularity of rainfall. Many Javanese farmers base their planting schedule on the Javanese lunar cyclical calendar, as well as observations of the environment, yet both are becoming unreliable. Instead of relying on observations that used to indicate the start of the rainy season such as falling leaves, singing birds or noisy insects, the farmer began using climate forecasts and other agro-meteorological information (Winarto et al., 2008). In other places farmers have begun documenting climate change impacts at local level (Ulsrud et al., 2008).

WOMEN’S ROLE IN ADAPTATION

Many projects concerned with the protection of agrobiodiversity are initiated and managed by local women’s groups. In India, women have initiated and engaged in a number of adaptation projects, which involve the revival of traditional seeds and the establishment of community seed banks. In Sri Lanka, a women-led project has been promoting the cultivation of indigenous roots and tuber crops, organic agriculture and integrated pest management, and seed bank establishment (Equator Initiative, 2008c). Women’s groups are also involved in ecosystem protection and restoration projects. An example comes from Senegal, where a collective of women’s groups in nine villages manages mangrove nurseries and reforestation. The group has made significant contributions towards restoring the mangroves and protection of biodiversity, which has encouraged the return of wildlife (Equator Initiative, 2008d).

INTEGRATING ADAPTATION AND LIVELIHOODS WITH THE PROTECTION OF INDIGENOUS PEOPLES’ RIGHTS

Adaptation projects are closely linked to the initiatives aiming to protect traditional knowledge and indigenous people’s rights. Many adaptation projects are initiated, supported and carried out by indigenous communities trying to protect their rights to ancestral lands and culture. In the Philippines, an organization of the Kalinga indigenous peoples, working on, among other issues, the protection of biodiversity and indigenous rights, is engaged in a number of activities of critical importance to the resilience of local food systems such as watershed rehabilitation, reforestation, and rice terrace rehabilitation. The organization aims to achieve sustainable livelihoods through the indigenous forest, watershed, irrigation and ecoagriculture management systems; and protect the rights of Kalinga indigenous peoples and their ownership over ancestral lands (Equator Initiative, 2004a).
In Colombia, Panama, Peru, Bolivia, Ecuador, Thailand, India and other countries, indigenous organisations are actively involved in the protection of traditional knowledge and reintroduction of indigenous crop varieties of vegetables, tubers, grains, beans and fruit. The Potato Park in Cusco, Peru was created in 2005 to protect the genetic diversity of local potato varieties and associated indigenous knowledge. The project demonstrates the link between the protection of agrobiodiversity and the protection of indigenous people’s rights, livelihoods and culture. Indigenous Quechua communities involved in the project have brought back from a gene bank into their fields over 400 potato varieties to ensure the adaptation to changing climatic conditions (Argumedo, 2008). The park has organised indigenous technical experts to monitor changes and identify responses and innovations that are consistent with the cultural imperatives and livelihood needs of Andean communities (ibid).

CONCLUSIONS

Three general conclusions can be drawn from this analysis of the different ways in which indigenous and traditional agricultural communities are coping with climate change. Firstly, adapting to climate change has usually involved a range of different actions at all three levels; ecosystem or landscape, farm or agricultural system, and involving both inter- and intra-specific diversity. Secondly, innovation based on both traditional knowledge and new information has been important, and social (e.g. community) cultural and political dimensions have played a key role. Thirdly, use of traditional crop and livestock species and varieties, with new materials where necessary, has been a common feature. From these follow a number of specific conclusions that can provide a basis for action to support adaptation by indigenous and traditional agricultural communities.

  • The resilience of local food systems and their adaptation to change can be enhanced through a strategy of diversification within landscape and agricultural system or farm. This may be achieved using a range of different approaches including agroforestry, maintenance of a diversity of crop species and varieties, and increased use of agro-ecosystem-associated biodiversity and is equally appropriate in dryland, mountain, humid tropic and coastal environments.
  • Ecosystem protection and restoration, landscape rehabilitation and reforestation can reduce the adverse effects of climate change on local food systems. They reduce the vulnerability to extreme weather events, drought, excessive rainfall and seawater intrusion, and help ensure ecosystem services such as pollination, pest regulation and erosion control.
  • Resilience and adaptability seem to be enhanced by the use of sustainable agricultural practices (e.g. low-input agriculture). High-input agricultural practices and the ecosystem degradation often associated with their use accelerate the loss of agrobiodiversity, soil erosion and water depletion, and thereby aggravate the vulnerability of traditional agricultural communities to climate change.
  • Adaptation involves the continuing maintenance in production systems of intra- and inter-species diversity using traditional crop and livestock species and varieties and access to new diversity. Maintenance of sufficient diversity allows farmers to improve stress tolerance through selection and breeding techniques, and enables the natural process of adaptation to operate under the changing agro-ecological conditions. Access to new crop and livestock materials can also be an important part of coping strategies.
  • Adaptation solutions are local. Protection and restoration of ecosystems, diversification of agricultural landscapes and the protection and use of agrobiodiversity de.ne an adaptation framework that can be applied in different environments. However, the choice and design of specific strategies are based on local experiences of climate change, needs, resources, knowledge and agricultural traditions.
  • Adaptation activities are undertaken at the community level. Many of the challenges cannot be met at the level of the individual or farm and require community involvement. Community institutions play an important part in adaptation. Women as custodians of agrobiodiversity often play a key role in adaptation activities.
  • The need to adapt to climate change has often led to the revival of traditional practices and agricultural systems. Traditional agricultural practices and land-management techniques, especially in stress-prone environments, can help ensure productivity under adverse conditions through the management of microclimate and soil and water resources.
  • The continuous process of innovation required to cope with climate change involves the use of traditional knowledge combined with access to new knowledge. Local management systems of ecosystems, landscapes, agricultural systems and genetic material are often harmonised with and adjusted to changing agro-climatic conditions. At the same time new knowledge is also needed to cope with changing circumstances and the introduction of new materials.
  • Local agrobiodiversity-based solutions create opportunities for integration of adaptation and protection of indigenous peoples’ rights. Many adaptation initiatives mentioned in this paper are initiated, supported or managed by indigenous communities. Their adaptive capacity often depends on their ability to access their ancestral lands and protect their cultural heritage.

There remain a number of areas where we urgently need further work. one particular area is the social, cultural and political dimensions of adaptation. In a number of cases it is clear that an innovation based on traditional knowledge can lead to development of local adaptation measures that protect ecosystems and agrobiodiversity, and empower indigenous and traditional agricultural communities. This link between empowerment of communities and adaptation needs to be better understood. There is also a need to develop indicators of adaptation, adaptability and resilience that are useful at different levels and some communities and groups have already embarked on this. These indicators will help to identify what contribution agrobiodiversity can make and where it is likely to be most useful.
From the conclusions listed above it is possible to identify the kinds of activities that are likely to support the use of agrobiodiversity by traditional rural communities and indigenous peoples as part of their coping strategies. The support for, and maintenance of, local social and cultural institutions can obviously play an important part. Empowering communities so as to enable them to carry out interventions at ecosystem or landscape level can also be important. The need to ensure continuing access to a range of diverse crop varieties, agroforestry species and livestock types and their maintenance, is essential. This may best be combined with the further development of such materials through locally based selection or breeding activities. Way of supporting the maintenance of traditional knowledge combined with access to new information will be important as part of adaptation, as will the development and adoption of locally appropriate improved agronomic practices.
The results and conclusions show that agrobiodiversity has a key role to play in adaptation to climate change and to improving adaptability and resilience in agro ecosystems. It is essential that international and national policy debates on adaptation to climate change begin to take account of the rich experience and the actions already undertaken by traditional communities and indigenous peoples and to ensure their full involvement in debates on policies and actions required.

REFERENCES

Adger WN, Agrawala S, Mirza MMQ, Conde C, O’Brien K, Pulhin J, Pulwarty R, Smit B, Takahashi K. 2007. Assessment of adaptation practices, options, constraints and capacity. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK, 717-743.
Adger WN. 2006. Vulnerability. Global Environmental Change 16(3):268–281.
Argumedo A. 2008. Association ANDES: Conserving indigenous biocultural heritage in Peru. IIED Gatekeeper Series/International Institute for Environment and Development, Sustainable Agriculture Programme No. 137a. IIED. Natural Resources Group and Sustainable Agriculture and Rural Livelihoods Programme, London, UK.
Barrow E, Mlenge W. 2003. Trees as key to pastoralist risk management in semi-arid landscapes in Shinyanga, Tanzania and Turkana, Kenya. Presented at the CIFOR-FLR Conference, Bonn, Germany, May 2003.
Bergkamp G, Orlando B, Burton I. 2003. Change: adaptation of water resources management to climate change. IUCN, Gland, Switzerland.
Bezançon G, Pham JL, Deu M, Vigouroux Y, Sagnard F, Mariac C, Kapran I, Mamadou A, Gérard B, Ndjeunga J, Chantereau J. 2009. Changes in the diversity and geographic distribution of cultivated millet (Pennisetum glaucum (L.) R. Br.) and sorghum (Sorghum bicolor (L.) Moench) varieties in Niger between 1976 and 2003. Genetic Resources and Crop Evolution 56:223–236.
Bonifacio E, Zanini E. 1999. Sustainable domestication of indigenous fruit trees: the interaction between soil and biotic resources in some drylands of southern Africa. UNESCO Best Practices on Indigenous Knowledge.
Equator Initiative. 2004. Asociación de Trabajadores Autónomos San Rafael – Tres Cruces – Yurac Rumi (ASARATY) – Ecuador. http://equatorinitiative.org/index.php?option=com_content&view=article&id=491& Itemid=531&idx=49. Accessed 11 March 2010.
Equator Initiative. 2004a. Kalinga Mission for Indigenous Children and Youth Development, Inc. – Philippines. http://www.equatorinitiative.org/index.php?option=com_content&view=article&id=482:kamicydi&catid=1 05:equator-prize-winners-2004&Itemid=541&lang=es. Accessed 11 March 2010.
Equator Initiative. 2008b. Camalandaan Agroforest Farmers Association – Philippines. http://equatorinitiative. org/index.php?option=com_content&view=article&id=530&Itemid=531&idx=86. Accessed 10 March 2010.
Equator Initiative 2008c. Community Development Centre – Sri Lanka. http://equatorinitiative.org/index. php?option=com_content&view=article&id=527&Itemid=531&idx=87. Accessed 11 March 2010.
Equator Initiative 2008d. Fédération Régionale des Groupements de Promotion Féminine Ziguinchor. http:// equatorinitiative.org/index.php?option=com_content&view=article&id=520&Itemid=531&idx=81. Accessed 25 February 2010.
FAO. 2010a. Homestead gardens in Bangladesh. Technology for agriculture. Proven technologies for small holders. http://www.fao.org/teca/content/homestead-gardens-bangladesh. Accessed 24 April 2010.
FAO. 2010b. Incorporation of tree management into land management in Jamaica – guinea grass mulching. Technology for agriculture. Proven technologies for small holders. http://www.fao.org/teca/content/ incorporation-tree-management-land-management-jamaica-%C2%BF-guinea-grass-mulching. Accessed 24 March 2010.
Haq R, Kumar T, Ghosh P. 2009. Soil-less agriculture gains ground. LEISA Magazine 25(1):35.
Ho R. 2002. Waru waru, a cultivation and irrigation system used in flood-prone areas of the Altiplano. In: Boven K, Morohashi J, editors. Best practices using indigenous knowledge. Nuffic, the Hague, the Netherlands and UNESCO/MOST, Paris, France.
IISD. 2003a. Increasing the resilience of tropical hillside communities through forest landscape restoration. Climate change, vulnerable communities and adaptation. IISD Information Paper 2.
IISD. 2003b. Sustainable drylands management: a strategy for securing water resources and adapting to climate change. Climate change, vulnerable communities and adaptation. IISD Information Paper 3.
Kieft J. 2001. Indigenous variety development in food crops strategies on Timor: their relevance for in situ biodiversity conservation and food security. Indigenous Knowledge and Development Monitor 9-2.
Kouressy M, Bazile D, Vaksmann M, Soumare M, Doucoure T, Sidibe A. 2003. La dynamique des agroécosystèmes : un facteur explicatif de l’érosion variétale du sorgho Le cas de la zone Mali-Sud. In: Dugué P, Jouve Ph, éds. Organisation spatiale et gestion des ressources et des territoires ruraux. Actes du colloque international, 25-27, Montpellier, France. Umr Sagert, Cnearc.
Mapfumo P, Chikowo R, Mtambanengwe F, Adjei-Nsiah S, Baijukya F, Maria R, Mvula A, Giller K. 2008. Farmers’ perceptions lead to experimentation and learning, LEISA Magazine 24(4):30-31
McNeely JA, Scherr SJ. 2001. Common Ground, Common Future. How ecoagriculture can help feed the world and save wild biodiversity. IUCN – the World Conservation Union, Future Harvest.
Mitin A, 2009. Documentation of selected adaptation strategies to climate change in rice cultivation. East Asia Rice Working Group. http://www.eastasiarice.org/Books/Adaptation%20Strategies.pdf. Accessed 22 March 2010.
Morton JF. 2007. The impact of climate change on smallholder and subsistence agriculture. Proceedings of the National Academy of Science USA 104:19680-19685.
Narain P, Khan MA, Singh G. 2005. Potential for water conservation and harvesting against drought in Rajasthan, India. Working paper 104, Drought series: paper 7. International Water Management Institute, Sri Lanka.
Navdanya. 2009. www.navdanya.org. Accessed 26 March 2010.
New Agriculturalist. 2009a. Pastoralists: moving with the times? http://www.new-ag.info/focus/focusItem. php?a=966. Accessed 18 March 2010.
New Agriculturalist. 2009b. Ancient lesson in agroforestry – slash but don’t burn. http://www.new-ag.info/ focus/focusItem.php?a=1030. Accessed 18 March 2010.
Ouédrago E, Mando A, Brussard L. 2008. Termites and mulch work together to rehabilitate soils. LEISA Magazine 24(2):28.
Pratap U. 2008. Successful pollination of apples. Bees for Development Journal. http://www. beesfordevelopment.org/info/info/pollination/successful-pollination-of.shtml. Accessed 30 March 2010.
Reij C, Nasr N, Chahbani, B. 2002. Innovators in land husbandry in arid areas of Tunisia. In: Boven K, Morohashi, J, editors. Best practices using indigenous knowledge. Nuf.c, the Hague, the Netherlands, UNESCO/MOST, Paris, France.
Rerkasem K, Yimyam N, Rerkasem B. 2009. Land use transformation in the mountainous mainland Southeast Asia region and the role of indigenous knowledge and skills in forest management. Forest Ecology and Management. 257:2035–2043.
Salick J, Byg A. 2007. Indigenous peoples and climate change. University of Oxford, Oxford and the Missouri Botanical Garden, Missouri.
Selvaraju R, Subbiah AR, Baas S, Juergens I. 2006. Livelihood adaptation to climate variability and change in drought-prone areas in Bangladesh – case study. FAO, Rome, Italy.
Shah R, Ameta N. 2008 Adapting to change with a blend of traditional and improved practices. LEISA Magazine 24(4)9-11.
Taonda J-B, Hien F, Zango C. 2001. Namwaya Sawadogo: The ecologist of Touroum, Burkina Faso. In: Reij C, Waters-Bayer A, editors. Farmer innovation in Africa: a source of inspiration for agricultural development. Earthscan, London, UK.
Ulsrud K, Sygna L, O’Brien K. 2008. More than rain: identifying sustainable pathways for climate adaptation and poverty reduction. The Development Fund/Utviklingsfondet. http://www.utviklingsfondet.no/English/For_ partners/Lessons_learnt/More_than_Rain. Accessed 7 March 2010.
UNFCCC. 2010. The UNFCCC local coping strategies database. http://maindb.unfccc.int/public/adaptation/. Accessed 5 March 2010.
USC Canada. 2008. Growing resilience: seeds, knowledge and diversity in Honduras. Canadian Food Security Policy Group. http://www.ccic.ca/_.les/en/working_groups/003_food_2009-03_case_study_honduras.pdf. Accessed 7 March 2010.
Vakeesan A, Nishanthan T, Mikunthan G. 2008. Green manures: nature’s gift to improve soil fertility, LEISA Magazine 24(2)16-17.
Vershot LV, Mackensen J, Kandji S, Noordwijk M, Tomich T, ong C, Albrecht A, Bantilan C, Anupama KV, Palm C. 2005. Opportunities for linking adaptation and mitigation in agroforestry systems. http://www. worldagroforestry.org/downloads/publications/PDFS/BC04241.pdf. Accessed 1 March 2010.
Walker B, Holling CS, Carpenter SR, Kinzig A. 2004. Resilience, adaptability and transformability in social-ecological systems. Ecology and Society 9(2):art. 5.
Wajih SA. 2008. Adaptive agriculture in flood affected areas. LEISA Magazine 24(4):24-25
Winarto YT, Stigter K, Anantasari E, Hidayah SN. 2008. Climate field schools in Indonesia: improving “response farming“ to climate change. LEISA Magazine 24(4)24-25.
Wetlands International. 2009. www.wetlands.org. Accessed 8 March 2010.

ACKNOWLEDGEMENTS: This paper synthesizes the results of work undertaken by the Platform for Agrobiodiversity Research as part of its project on “The use of agrobiodiversity by indigenous peoples and rural communities in adapting to climate change”. An earlier version of the paper was discussed during a workshop held in Chiang Mai, Thailand in June 2009. The financial, scientific and technical support of the Christensen Fund, Bioversity International and the Chiang Mai University are gratefully acknowledged. The paper was prepared by Dunja Mijatovic with assistance from Paul Bordoni, Pablo Eyzaguirre, Elizabeth Fox, Sara Hutchinson, Frederick van Oudenhoven and Toby Hodgkin.
Photographs: cover, page 27 ©FAO/Peter DiCampo; page 5 ©Tim Murray; page 8, 26 ©FAO/Pietro Cenini; page 3, 10, 17, 21 ©Paola De Santis; page 13 ©FAO/E.Yeves; page 14, 19 ©FAO/Giulio Napolitano; page 24 ©PAR/Paul Bordoni.

728x90

+ Recent posts